碰撞检测 | 矩形增量膨胀安全走廊模型(附C++/Python仿真)

全走廊建模的动机2 矩形增量膨胀算法3 算法仿真3.1 C++实现3.2 Python实现 0 专栏介绍 🔥课设、毕设、创新竞赛必备!🔥本专栏涉及更高阶的运动规划算法轨迹优化实战,包括:曲线生成、碰撞检测、安全走廊、优化建模(QP、SQP、NMPC、iLQR等)、轨迹优化(梯度法、曲线法等),每个算法都包含代码实现加深理解 🚀详情:运动规划实战进阶:轨迹优化篇 1 安全走廊建模的动机 在轨迹优化算法中...

OpenCV 车道检测

OpenCV 车道检测 前言模型分析车道检测相关链接 前言 如果要检测道路图像中的车道,方法之一是利用深度学习的语义分割技术。而在 OpenCV 中解决此问题可以使用边缘检测器。在本节中,我们将了解如何使用边缘检测和直线检测识别道路图像中的车道。 模型分析 使用 OpenCV 检测图像中道路边缘的策略如下: 检测图像中的对象边缘识别遵循直线且连接的边缘从图像的一端延伸识别出的直线至另一端 车道检测 ...

OpenCV颜色检测

OpenCV颜色检测 前言策略分析根据颜色检测目标对象相关链接 前言 绿幕技术是一种经典的视频编辑技术,可以用于将人物置于不同的背景中。例如在电影制作中,技术的关键在于演员不能身着特定颜色的衣服(比如绿色),站在只有绿色的背景前。然后,通过识别绿色像素,确定背景并替换这些像素上的内容。 策略分析 在本节中,我们将了解如何利用 cv2.inRange 和 cv2.bitwise_and 方法检测给定图...

自动检测曲别针数量:图像处理技术的应用

引言 在这篇博客中,我们将探讨如何使用计算机视觉技术自动检测图像中曲别针的数量。 如图: [1]使用灰度转换 由于彩色信息对于曲别针计数并不重要,我们将图像转换为灰度图,这样可以减少处理数据的复杂度,加速后续的图像处理步骤。 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) [2]二值化处理 通过应用二值化处理,我们将灰度图转换为黑白图像。在这个步骤中,图...

城市行人感知新方法:基于音频的行人检测与预测

器已经部署在城市环境中,特别是在交通领域,也用于监测环境条件、能源、水和废物的流动,以及追踪犯罪活动。随着对主动移动性和步行友好性的日益关注,一些城市已经尝试使用各种技术来感知人群。      行人的检测主要基于视频数据分析或通过红外计数器进行,这两者都比音频传感昂贵得多。有时考虑用于行人感知的更复杂的替代方案,如雷达、无线电波束、感应线圈和压电条,部署和维护成本也很高。在本文中,我们探讨将基于麦克风...

ToxVidLLM:一个用于检测有害视频的多模态多任务框架

e上,用户每天就共同观看超过十亿小时的视频内容。视频内容的病毒性质是一把双刃剑:它促进了新闻的快速传播,同时也加速了有害言论的传播。      我们推荐一个先进的多模态多任务框架,用于视频内容中的毒性检测,利用大型语言模型(LLMs),并结合了进行情感和严重性分析的附加任务。ToxVidLLM结合了三个关键模块——编码器模块、跨模态同步模块和多任务模块——构建了一个为复杂视频分类任务定制的通用多模态L...

基于深度学习的红外船舶检测识别分类完整实现数据集8000+张

随着遥感技术的快速发展,包括无人机、卫星等,红外图像在船舶检测识别中的作用日益凸显。相对于可见光图像,红外图像具有在夜晚和恶劣天气条件下高效检测识别船舶的天然优势。近年来,深度学习作为一种强大的图像处理技术,在红外船舶检测识别领域取得了显著进展。 目前,广泛采用了深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),用于红外船舶检测识别。这些模型通过大量标注的红外船舶图像数据进行训练,实现...

自动化迁移和更新物体检测XML数据集

w") as f: f.write(str(count)) f.write("\n") f.write(labels_str) 结论 我们介绍的脚本可以帮助用户以一种简单高效的方式来处理和准备用于物体检测的图片数据集。通过使用此脚本,用户可以节省宝贵的时间并减少手动错误,提高了数据准备工作的效率。 代码 完整脚本可以在本文附带的代码段中找到。如果你有兴趣自己尝试或者修改以适应你的项目需求,欢迎下载和使...

基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述         基于小波变换和峰值搜索的光谱检测matlab仿真,带GUI界面.对光谱数据的成分进行提取,分析CO2,SO2,CO以及CH4四种成分比例。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 ...........................

Pytorch 实现目标检测二(Pytorch 24)

一 实例操作目标检测 下面通过一个具体的例子来说明锚框标签。我们已经为加载图像中的狗和猫定义了真实边界框,其中第一个 元素是类别(0代表狗,1代表猫),其余四个元素是左上角和右下角的(x, y)轴坐标(范围介于0和1之间)。我 们还构建了五个锚框,用左上角和右下角的坐标进行标记:A0, . . . , A4(索引从0开始)。然后我们在图像中 绘制这些真实边界框和锚框。 ground_truth = t...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.005164(s)
2024-11-21 17:28:45 1732181325