UG NX二次开发(C++)-根据草图创建拉伸特征(UFun+NXOpen)

1、前言 UG NX是基于特征的三维建模软件,其中拉伸特征是一个很重要的特征,有读者问如何根据草图创建拉伸特征,我在这篇博客中讲述一下草图创建拉伸特征的UG NX二次开发方法,感兴趣的可以加入QQ群:749492565,或者在评论区留言。 2、在UG NX中创建草图,然后创建拉伸特征 进入建模环境,主页->草图,进入草图环境,然后创建一个矩形图形。如下图所示。 然后通过拉伸操作生成一个长方体,如下图...

视觉语言跨模态特征语义相似度计算改进--表征空间维度语义依赖感知聚合算法 ACM MM

atching (ACM MM23)代码主页:https://github.com/CrossmodalGroup/X-Dim主要优势 (Highlights):1)模型设计简单有效,仅改变视觉特征和文本特征之间相似度计算的 维度对应聚合方式,在基础基线SCAN上取得显著性能提升,达到SOTA;2)理论上分析,所提出方法等价于在相似度计算过程中引入核函数,理论上可以将原始表征空间从有限的$d$...

从音频中提取MFCC特征的过程

在语音信号处理和语音识别领域,梅尔频率倒谱系数(MFCC)是最常用的特征之一。本文将逐步介绍如何从音频中提取MFCC特征,并在每个步骤中进行可视化展示。 步骤 1:加载音频文件并查看波形 首先,我们需要加载音频文件并查看其波形。为了便于处理,我们将MP3文件转换为WAV格式。 from pydub import AudioSegmentimport scipy.io.wavfile as wav...

【数据挖掘】使用RFE进行特征选择

写在前面: 首先感谢兄弟们的订阅,让我有创作的动力,在创作过程我会尽最大能力,保证作品的质量,如果有问题,可以私信我,让我们携手共进,共创辉煌。 使用递归特征消除(RFE)进行特征选择是一个有效的方法,可以帮助你确定数据集中哪些特征对模型预测最为重要。以下是一个使用RFE进行特征选择的步骤指南: 1、介绍 数据准备: 首先,你需要有一个数据集,它通常包括多个特征(自变量)和一个目标变量(因变量)。确...

Sora和快手可灵背后的核心技术 | 3DVAE:通过小批量特征交换实现身体和面部的三维形状变分自动编码器

【摘要】学习3D脸部和身体生成模型中一个解开的、可解释的和结构化的潜在表示仍然是一个开放的问题。当需要控制身份特征时,这个问题尤其突出。在本文中,论文提出了一种直观而有效的自监督方法来训练一个3D形状变分自动编码器(VAE),以鼓励身份特征的解开潜在表示。通过交换不同形状间的任意特征来管理迷你批次生成,这允许定义一个利用已知的潜在表示中的差异和相似性的损失函数。在3D网格上进行的实验结果表明,用于潜...

番外篇 | 利用华为2023最新Gold-YOLO中的Gatherand-Distribute对特征融合模块进行改进

     目录 🚀1.论文解析 🚀2.添加步骤 🚀3.改进方法 💥💥步骤1:创建goldyolo.py文件 💥💥步骤2:yolo.py文件修改 💥💥步骤3:创建自定义yaml文件 💥💥步骤4:修改自定义yaml文件 💥💥步骤5:验证是否加入成功 💥💥步骤6:修改默认参数 🚀1.论文解析...

Pointnet++改进卷积系列:全网首发SMPConv连续卷积 |即插即用,提升特征提取模块性能

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入SMPConv,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤三 1.理论介绍 连续卷积最近因其处理不规则采样数据和建立长期依赖关系模型的能...

YoloV8改进策略:Neck篇|自研Neck层融合模型|深度特征与浅层特征融合,涨点明显|附结构图(独家原创)

摘要 本文介绍的独家原创的Neck层特征融合方法,将深度特征和浅层特征相融合,结合自研下采样模块和动态上采样模块,提供了一种高效的Neck层改进方式,不仅为他们提供了一个现成的解决方案,而且能够作为灵感启发,鼓励他们在此基础上进行进一步的探索和创新。即插即用的特性使得这种改进方式易于集成到现有的深度学习框架中,降低了实验和应用的门槛。对于想发顶会的同学一定不要错过! 代码以及解析 from .dys...

FFA-Net:用于单图像去雾的特征融合注意力网络

摘要 论文链接:https://arxiv.org/pdf/1911.07559v2 在这篇论文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键组件组成: 一种新颖的特征注意力(FA)模块结合了通道注意力与像素注意力机制,考虑到不同通道特征包含完全不同的加权信息,且雾在图像的不同像素上分布不均匀。FA模块对不同的特征和像素进行非等权重处理...

Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明

Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明 目录 Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明 一、简单介绍 二、分箱、离散化、线性模型与树 三、交互特征与多项式特征 附录 一、参考文献 一、简单介绍 Python是一种跨平台的计算机程序设计语言。是...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.004285(s)
2024-11-07 11:30:06 1730950206