Pointnet++改进卷积系列:全网首发ODConv2全维动态卷积 |即插即用,提升特征提取模块性能

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ODConv2全维动态卷积,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤三...

YOLOv5涨点改进:多层次特征融合(SDI),小目标涨点明显,| UNet v2,比UNet显存占用更少、参数更少

💡💡💡本文全网独家改进:多层次特征融合(SDI),能够显著提升不同尺度和小目标的识别率 💡💡💡在YOLOv5中如何使用 1)iAFF加入Neck替代Concat;   💡💡💡Yolov5/Yolov7魔术师,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 💡💡💡重点:通过本专栏的阅读,后续你也可以自己魔改网络,...

【Java SE语法篇】8.面向对象三大特征——封装、继承和多态

this 关键字是为了解决实例变量和局部变量之间发生的同名的冲突。 2. 继承 2.1 继承的概念 继承是 java 面向对象编程技术的一块基石,因为它允许创建分等级层次的类。 继承就是子类继承父类的特征和行为,使得子类对象(实例)具有父类的实例域和方法,或子类从父类继承方法,使得子类具有父类相同的行为。 生活中的继承 兔子和羊属于食草动物,狮子和老虎属于食肉动物。 食草动物和食肉动物又是属于动物。 ...

YOLOv5改进 | 主干篇 | 12月最新成果UniRepLknet特征提取网络(附对比试验效果图)

 一、本文介绍 本文给大家带来的改进机制是特征提取网络UniRepLknet,其也是发表于今年12月份的最新特征提取网络,该网络结构的重点在于使用Dilated Reparam Block和大核心指导原则,强调了高效的结构进行通道间通讯和空间聚合,以及使用带扩张的小核心进行重新参数化,该网络结构就是在LKNet基础上的一个升级版本,LKNet我们之前已经出过教程了。UniRepLknet在各种视觉任务...

YOLOv5改进 | 检测头篇 | ASFFHead自适应空间特征融合检测头(全网首发)

一、本文介绍 本文给大家带来的改进机制是利用ASFF改进YOLOv5的检测头形成新的检测头Detect_ASFF,其主要创新是引入了一种自适应的空间特征融合方式,有效地过滤掉冲突信息,从而增强了尺度不变性。经过我的实验验证,修改后的检测头在所有的检测目标上均有大幅度的涨点效果,此版本为三头版本,后期我会在该检测头的基础上进行二次创新形成四头版本的Detect_ASFF助力小目标检测,本文的检测头非常推...

sklearn学习之用matplotlib绘制鸢尾花(Iris)数据集的两个特征:花萼的长度和宽度

经常使用的一个标准数据集,用于分类任务 from sklearn import datasets # 加载 Iris 数据集 iris = datasets.load_iris() # 查看数据集中的特征名称 print("特征名称:", iris.feature_names) # 查看数据集中的目标类别(鸢尾花的种类) print("目标类别:", iris.target_names) # 查看数据...

Pointnet++改进:在特征提取模块加入EMA注意力机制

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入EMA注意力机制,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤三 ...

Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头

前言 这篇博客针对《Python+Yolov5+Qt交通标志特征识别窗体界面相片视频摄像头》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。 运行结果 文章目录 一、所需工具软件 二、使用步骤        1. 主要代码        2. 运行结果 三、在线协助 一、所需工具软件        1. Python        2. Pycharm 二、使用步骤 代码如下(示例): def...

特征特征图的区别

1.特征图是什么? 特征图是指在卷积神经网络中,通过卷积操作从输入图像中提取出来的图像特征。在卷积神经网络中,每一层的输出都是一个三维张量,其中第三维表示特征图的数量。每个特征图都是由若干个卷积核对上一层的特征图进行卷积得到的,每个卷积核对应一个特定的特征。因此,特征图可以看作是对输入图像中某些特定特征的响应结果,可以用于理解卷积神经网络的工作原理以及可视化卷积神经网络的特征提取过程。 2.特征是什么...

27、卷积 - 卷积特征的可视化和一个神奇的网站

既然上一节说了卷积的本质是一个特征提取器,那么既然卷积神经网络在图像分类、图像检测、图像分割以及其他领域有这么好的表现,卷积算法到底提取了什么特征呢? 虽然有时候我们说神经网络是个黑盒,但是研究人员也一直在探索,如何将卷积学习到的特征给分析出来。 就是想要看一看,在 CNN网络中,那么多卷积,到底提取了哪些特征。 这就涉及到了卷积特征的可视化技术。 我们可以通过一定的方法,将神经网络每一层卷积的输出(...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.012969(s)
2024-11-07 11:31:46 1730950306