YoloV8改进策略:Neck篇|自研Neck层融合模型|深度特征与浅层特征融合,涨点明显|附结构图(独家原创)

摘要 本文介绍的独家原创的Neck层特征融合方法,将深度特征和浅层特征相融合,结合自研下采样模块和动态上采样模块,提供了一种高效的Neck层改进方式,不仅为他们提供了一个现成的解决方案,而且能够作为灵感启发,鼓励他们在此基础上进行进一步的探索和创新。即插即用的特性使得这种改进方式易于集成到现有的深度学习框架中,降低了实验和应用的门槛。对于想发顶会的同学一定不要错过! 代码以及解析 from .dys...

FFA-Net:用于单图像去雾的特征融合注意力网络

摘要 论文链接:https://arxiv.org/pdf/1911.07559v2 在这篇论文中,我们提出了一种端到端的特征融合注意力网络(FFA-Net)来直接恢复无雾图像。FFA-Net架构由三个关键组件组成: 一种新颖的特征注意力(FA)模块结合了通道注意力与像素注意力机制,考虑到不同通道特征包含完全不同的加权信息,且雾在图像的不同像素上分布不均匀。FA模块对不同的特征和像素进行非等权重处理...

Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明

Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明 目录 Python 机器学习 基础 之 数据表示与特征工程 【分箱、离散化、线性模型与树 / 交互特征与多项式特征】的简单说明 一、简单介绍 二、分箱、离散化、线性模型与树 三、交互特征与多项式特征 附录 一、参考文献 一、简单介绍 Python是一种跨平台的计算机程序设计语言。是...

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明

Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 目录 Python 机器学习 基础 之 数据表示与特征工程 【单变量非线性变换 / 自动化特征选择/利用专家知识】的简单说明 一、简单介绍 二、单变量非线性变换 三、自动化特征选择 1、单变量统计 2、基于模型的特征选择 3、迭代特征选择 四、利用专家知识 附录 一、参考文献 一、简...

PVT:特征金字塔在Vision Transormer的首次应用,又快又好 | ICCV 2021

纯Transformer模型替换CNN主干网络,在图像分类任务上取得了不错的结果。虽然ViT适用于图像分类,但直接将其用于像素级密集预测(如对象检测和分割)具有一定难度,主要原因有两点: ViT输出的特征图是单尺度且低分辨率的。即便是常见的输入图像尺寸,ViT的计算和内存成本都相对较高。   为了解决上述问题,论文提出了一个纯Transformer主干网络Pyramid Vision Transfo...

16.5 DarLoc:基于深度学习和数据特征增强的鲁棒室内磁定位

基于磁场的室内定位方法受到了广泛的关注,并且不需要额外的基础设施。然而,现有方法仍然面临着设备类型、行人持有姿态和移动速度等因素造成的异质性问题。为了解决这个问题,本文提出了一种新的基于深度学习和数据特征增强的磁性定位框架(DarLoc)。首先,采用方向不敏感的磁信号提取方法去除序列中的直流分量,以消除不同保持姿态和不同移动设备带来的影响;其次,提出了新颖的数据增强和特征增强方法来提取速度信息的特征,...

【Image captioning】基于检测模型网格特征提取——以Sydeny为例

【Image captioning】基于检测模型网格特征提取——以Sydeny为例 今天,我们将重点探讨如何利用Faster R-CNN检测模型来提取Sydeny数据集的网格特征。具体而言,这一过程涉及通过Faster R-CNN模型对图像进行分析,进而抽取出关键区域的特征信息,这些特征在网格结构中被系统地组织和表示。下面,我将引导大家深入了解这一特征提取流程。 1. 数据的预处理 为了适应In D...

【白话机器学习系列】白话特征向量

白话特征向量 一个方阵 A A A 与列向量 v v v 的乘积会生成一个新的列向量。这个新向量通常与原向量有着不同的方向,矩阵在这里代表一个线性变换。然而,某些向量会保持其原始方向。我们称这种向量为矩阵 A A A 的特征向量(eigenvector)。 在本文中,我们将探讨特征向量、特征值和矩阵的特征方程。并且以 2 维方阵为例,教大家如何计算矩阵的特征向量和特征值。 文章目录 举个例子特征向量...

Mamba3D革新3D点云分析:超越Transformer,提升本地特征提取效率与性能!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! Mamba3D革新3D点云分析:超越Transformer,提升本地特征提取效率与性能! 引言:3D点云分析的重要性与挑战 3D点云数据是现代许多应用领域中不可或缺的一部分,包括自动驾驶、虚拟现实(VR/AR)、机器人技术等。这些数据通常由3D扫描设备捕获,能够详细地描述物体的空间形状和外观。与传统的...

【python】基于librosa库提取音频特征

一、源码 import librosaaudio_path = './audio.mp3'audio, sr = librosa.load(audio_path)# 提取音频信号的时域特征amplitude = librosa.amplitude_to_db(librosa.stft(audio), ref=np.max)# 提取音频信号的频域特征mfccs = librosa.featu...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.027185(s)
2024-11-21 17:54:59 1732182899