c++单例模式包括懒汉模式和饿汉模式(优劣势分析和改进方法)
1.单例模式说明 在整个软件的运行过程中,让整个类有且只有一个实例化对象存在于整个进程中。 是最简单的一个设计模式,然后再项目开发中也是使用最广的。 2.使用单例模式的优点 1.节省资源:再整个软件的运行过程中,只有一个实例化对象,不用重新分配新的堆空间。 2.数据的传递:由于单例只会创建一个实例化对象,比如有一个在停车场对你的车辆进行计费的程序。但是计费需要多个步骤,这样每个步骤调用的都是同一个单例...
YOLOv8独家改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
💡💡💡本文独家改进:一种超轻量高效动态上采样DySample, 具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv8网络中的nn.Upsample 💡💡💡在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。 收录 YOLOv8原创自研 https://blog.csdn.net/m0_63774211/category_12511737.html?spm=1001.2014.30...
RT-DETR算法优化改进:上采样算子 | 超轻量高效动态上采样DySample,效果秒杀CAFFE,助力小目标检测
💡💡💡本文独家改进:一种超轻量高效动态上采样DySample, 具有更少的参数、FLOPs,效果秒杀CAFFE和YOLOv8网络中的nn.Upsample 💡💡💡在多个数据集下验证能够涨点,尤其在小目标检测领域涨点显著。 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html ✨✨✨魔改创新RT-DE...
RT-DETR算法优化改进: 下采样系列 | 一种新颖的基于 Haar 小波的下采样HWD,有效涨点系列
💡💡💡本文独家改进:HWD的核心思想是应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息,与传统的下采样方法相比,有效降低信息不确定性。 💡💡💡使用方法:代替原始网络的conv,下采样过程中尽可能包括更多信息,从而提升检测精度。 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.html ✨✨...
Pointnet++改进卷积系列:全网首发ODConv2全维动态卷积 |即插即用,提升特征提取模块性能
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入ODConv2全维动态卷积,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一 2.2 步骤二 2.3 步骤三...
YOLOv5独家改进:轻量级原创自研 | 一种多尺度的GSConv卷积变体,轻量化的同时能够实现涨点 | 新颖的轻量级网络
💡💡💡本文独家改进:1)基于GSConv提出了一种Multi-Scale Ghost Conv的卷积变体,保证轻量级的同时实现涨点,2)同时结合Bottleneck,设计了一种新颖的轻量级网络。 💡💡💡在多个数据集验证能够涨点,同时跟yolov5s进行参数量对比: parameters、GFLOPs都有大幅度的降低 ...
【RT-DETR有效改进】Slim-Neck替换特征融合层实现超级涨点 (轻量又涨点)
👑欢迎大家订阅本专栏,一起学习RT-DETR👑 一、本文介绍 本文给大家带来的改进机制是Slim-neck提出的Neck部分,Slim-neck是一种设计用于优化卷积神经网络中neck部分的结构。在RT-DETR中,neck是连接主干网络(backbone)和头部网络(head)的部分,负责特征融合和处理,以便提高检测的准确性和效率。亲测在小目标检测和大尺度目标检测的数据集上都有大幅度的涨点效果...
RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制
💡 RT-DETR改进有效系列目录 💡 前言 Hello,各位读者们好 Hello,各位读者,距离第一天发RT-DETR的博客已经过去了接近两个月,这段时间里我深入的研究了一下RT-DETR在ultralytics仓库的使用,旨在为大家解决为什么用v8的仓库训练的时候模型不收敛,精度差的离谱的问题,我也是成功的找到了解决方案,对于ultralytics仓库进行多处改进从而让其还原RT-DETR官...
【RT-DETR有效改进】EfficientFormerV2移动设备优化的视觉网络(附对比试验效果图)
👑欢迎大家订阅本专栏,一起学习RT-DETR👑 一、本文介绍 本文给大家带来的改进机制是特征提取网络EfficientFormerV2,其是一种针对移动设备优化的视觉变换器(Vision Transformer),它通过重新考虑ViTs的设计选择,实现了低延迟和高参数效率,通过修改改网络我们的参数量降低了约百分之五十,GFLOPs也降低了百分之五十,其作为一种高效和轻量化的网络无论从精度还是效果上...
YOLOv8改进 | Conv篇 | 结合Dual思想利用HetConv创新一种全新轻量化结构CSPHet(参数量下降70W)
一、本文介绍 本文给大家带来的改进机制是我结合Dual的思想利用HetConv提出一种全新的结构CSPHet,我们将其用于替换我们的C2f结构,可以将参数降低越75W,GFLOPs降低至6.6GFLOPs,同时本文结构为我独家创新,全网无第二份,非常适合用于发表论文,该结构非常灵活,利用Dual卷积思想,结合异构内核卷积来并行处理图片,结构上的结合非常合理,同时该结构非常适合轻量化的读者。 在开始之前...