YOLOv8改进 | Conv篇 | 全新的SOATA轻量化下采样操作ADown(参数量下降百分之二十,附手撕结构图)

一、本文介绍  本文给大家带来的改进机制是利用2024/02/21号最新发布的YOLOv9其中提出的ADown模块来改进我们的Conv模块,其中YOLOv9针对于这个模块并没有介绍,只是在其项目文件中用到了,我将其整理出来用于我们的YOLOv8的项目,经过实验我发现该卷积模块(作为下采样模块)首先可以大幅度降低参数值(v8n大约六十万),其次其精度上也有很高的提升,同时本文的内容目前网络上并无其它人总...

YOLOv8-Seg改进:卷积变体系列篇 | Shift-ConvNets,具有大核效应的小卷积核

🚀🚀🚀本文改进:Shift-ConvNets让小卷积核也能达到大卷积核效果,实现涨点 🚀🚀🚀YOLOv8-seg创新专栏:http://t.csdnimg.cn/KLSdv 学姐带你学习YOLOv8,从入门到创新,轻轻松松搞定科研; 1)手把手教你如何训练YOLOv8-seg; 2)模型创新,提升分割性能; 3)独家自研模块助力分割; 1.Shift-Conv原理介绍  摘要:近年来的研究表明,视觉变...

使用k-近邻算法改进约会网站的配对效果(kNN)

tingDataMat, datingLabels = file2matrix('/content/drive/MyDrive/MachineLearning/机器学习/k-近邻算法/使用k-近邻算法改进约会网站的配对效果/datingTestSet2.txt')datingDataMat array([[4.0920000e+04, 8.3269760e+00, 9.5395200e-01], [...

Pointnet++改进卷积系列:全网首发RFAConv创新空间注意力和标准卷积运算 |即插即用,提升特征提取模块性能

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入RFAConv,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          2.3 步骤...

Pointnet++改进卷积系列:全网首发SCConv用于特征冗余的空间和通道重构卷积 |即插即用,提升特征提取模块性能

简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入SCConv用于特征冗余的空间和通道重构卷积,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一          2.2 步骤二          ...

YOLOv8改进 | Neck篇 | 当SDI碰上BiFPN形成全新的特征金字塔网络(全网独家创新)

一、本文介绍 本文给大家带来的改进机制是利用多层次特征融合模块(SDI)配上经典的加权双向特征金字塔网络Bi-FPN形成一种全新的Neck网络结构,从而达到二次创新的效果,其中(SDI)模块的主要思想是通过整合编码器生成的层级特征图来增强图像中的语义信息和细节信息。Bi-FPN无需过多介绍其作为经典的特征金字塔网络其效果一直以来都是非常的不错,其中Bi-FPN的劣势主要是时间过于久远,但是SDI是一种...

Matlab|基于支持向量机的电力短期负荷预测【最小二乘、标准粒子群、改进粒子群】

主要内容      部分代码      结果一览    下载链接 主要内容    该程序主要是对电力短期负荷进行预测,采用三种方法,分别是最小二乘支持向量机(LSSVM)、标准粒子群算法支持向量机和改进粒子群算法支持向量机三种方法对负荷进行预测,有详实的文档资料,程序注释清楚,方便学习!   部分代码    %C为最小二乘支持向量机的正则化参数,theta为高斯径向基的核函数参数,两个需要进行优化选...

扩展速度提高了12倍!AWS Lambda 函数重大改进

ervices 的首席开发倡导者,在软件行业构建和扩展应用程序方面拥有20年的工作经验。她热衷于设计能够充分利用云并拥抱DevOps文化的系统。最近她发表了一篇博文,带来了一个AWS Lambda重大改进:扩展速度提升了 12 倍! 1、Lambda函数更新,扩展速度倍增 现在,AWS Lambda 的扩展速度提高了 12 倍。每个同步调用的 Lambda 函数现在每 10 秒扩展 1000 个并发执...

YOLOv5改进 | 一文汇总:如何在网络结构中添加注意力机制、C3、卷积、Neck、SPPF、检测头

一、本文介绍 本篇文章的内容是在大家得到一个改进版本的C3一个新的注意力机制、或者一个新的卷积模块、或者是检测头的时候如何替换我们YOLOv5模型中的原有的模块,从而用你的模块去进行训练模型或者检测。因为最近开了一个专栏里面涉及到挺多改进的地方,不能每篇文章都去讲解一遍如何修改,就想着在这里单独出一期文章进行一个总结性教程,大家可以从我的其它文章中拿到修改后的代码,从这篇文章学会如何去添加到你的模型结...

YOLOv7独家原创改进:大核卷积涨点系列| Shift-ConvNets,稀疏/移位操作让小卷积核也能达到大卷积核效果 | 2024年最新论文

  💡💡💡本文独家改进:大的卷积核设计成为使卷积神经网络(CNNs)再次强大的理想解决方案,Shift-ConvNets稀疏/移位操作让小卷积核也能达到大卷积核效果,创新十足实现涨点,助力YOLOv8 💡💡💡在多个私有数据集和公开数据集VisDrone2019、PASCAL VOC实现涨点        收录 YOLOv7原创自研 https://blog.csdn.net/m0_63774211/c...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.008447(s)
2024-12-21 23:54:23 1734796463