YOLOv9改进策略 :红外小目标 | 注意力 |多膨胀通道精炼(MDCR)模块,红外小目标暴力涨点| 2024年3月最新成果
💡💡💡本文独家改进:多膨胀通道精炼(MDCR)模块,解决目标的大小微小以及红外图像中通常具有复杂的背景的问题点,2024年3月最新成果 💡💡💡红外小目标实现暴力涨点,只有几个像素的小目标识别率大幅度提升 💡💡💡多个私有数据集涨点明显,如缺陷检测NEU-DET、农业病害检测等; 改进1结构图如下: 改进2结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】...
YOLOv8蒸馏 | 知识蒸馏 | 利用模型蒸馏改进YOLOv8进行无损涨点 | 在线蒸馏 (附代码 + 完整文件 + 解析教程)
一、本文介绍 这篇文章给大家带来的是模型的蒸馏,利用教师模型指导学生模型从而进行模型的涨点,本文的内容不仅可以用于论文中,在目前的绝大多数的工作中模型蒸馏是一项非常重要的技术,所以大家可以仔细学习一下本文的内容,本文从YOLOv8的项目文件为例,进行详细的修改教程, 文章内包括完整的修改教程,针对小白我出了视频修改教程,如果你还不会我提供了修改后的文件大家直接运行即可,所以说不用担心不会适用!模型蒸馏...
Matlab|基于改进遗传算法的配电网故障定位
目录 1 主要内容 2 部分代码 3 部分程序结果 4 下载链接 1 主要内容 该程序复现文章《基于改进遗传算法的配电网故障定位》,将改进的遗传算法应用于配电网故障定位中, 并引入分级处理思想, 利用配电网呈辐射状的特点, 首先把整个配电网划分为主干支路和若干独立区域, 再利用该算法分别对各独立区域进行故障定位, 然后进行全局寻优, 这样能大大减少可行解的维数, 提高定位速度。使用该定位方法对一具有 ...
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 粒子群优化算法 (PSO) 4.2 反向学习粒子群优化算法 (OPSO) 4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO) 5.完整程序 1.程序功能描述 分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法.对比其优化收敛曲线。 2.测试软件版本以及运行结果展示 MATLAB2...
YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新
💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,新型边界框相似度度量(MPDIoU)MPDIoU损失进行有效结合 💡💡💡适用场景:小目标数据集,进一步提升检测精度,强烈推荐 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样...
YOLOv8全网独家改进: 小目标 |新颖的多尺度前馈网络(MSFN) | 2024年4月最新成果
💡💡💡本文独家改进:多尺度前馈网络(MSFN),通过提取不同尺度的特征来增强特征提取能力,2024年最新的改进思路 💡💡💡创新点:多尺度前馈网络创新十足,抢先使用 💡💡💡如何跟YOLOv8结合:1)放在backbone后增强对全局和局部特征的提取能力;2)放在detect前面,增强detect提取能力;提供多种改进方案 💡💡💡多个私有数据集涨点明显,如缺陷检测NEU-DET、农业病害检测等;...
Pointnet++改进即插即用系列:全网首发OREPA在线重新参数化卷积,替代普通卷积 |即插即用,提升特征提取模块性能
简介:1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!2.本篇文章对Pointnet++特征提取模块进行改进,加入OREPA,提升性能。3.专栏持续更新,紧随最新的研究内容。 目录 1.理论介绍 2.修改步骤 2.1 步骤一 2.2 步骤二 2.3 步骤三...
YOLOv9改进策略:注意力机制 | 多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM等 | 即插即用系列,原创独家首发
💡💡💡本文改进内容:多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM,创新性十足,可直接作为创新点使用。 改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化】【小目标性能提升】【前沿...
YoloV8改进策略:BackBone改进|GCNet(独家原创)
中取得巨大成功,为了提高原始架构的精度,已经进行了许多尝试[18,26,27,10,37,15,34,14,43,13,40,11,4,42,19,2,24,31,35,6]。网络设计的一个重要方向是改进基本组件的功能公式,以提升深度网络的性能。ResNeXt[34]和Xception[3]采用分组卷积来增加基数。可变形卷积网络(Deformable ConvNets)[4, 42]设计了可变形卷积以...
YOLOv9改进策略 :注意力机制 | 注意力机制与卷积的完美融合 | 最新移动端高效网络架构 CloFormer
💡💡💡本文改进内容: 引入CloFormer 中的 AttnConv,上下文感知权重使得模型能够更好地适应输入内容。相比于局部自注意力机制,引入共享权重使得模型能够更好地处理高频信息,从而提高性能。 💡💡💡注意力机制与卷积的完美融合 AttnConv | 亲测在多个数据集能够实现涨点 改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】...