【PyTorch】深度学习实战(1)——基于主动学习策略处理Mnist分类任务
【PyTorch】深度学习实战(1)——基于主动学习策略处理Mnist分类任务 🌵文章目录🌵 🔥一、引言📚二、核心思路💻三、数据准备🚀四、模型构建与初始训练与测试🔍五、主动学习📊六、模型评估🎉七、总结与展望🤝和您交个朋友 🔥一、引言 在深度学习的日常实践中,我们经常会遇到标注数据不足的问题。想象一下,如果你有大量的数据需要标注,但时间和预算都有限,你会怎么做? 这时,主动学习就派上用场了。主动学...
YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新
💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,新型边界框相似度度量(MPDIoU)MPDIoU损失进行有效结合 💡💡💡适用场景:小目标数据集,进一步提升检测精度,强烈推荐 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样...
YOLOv9改进策略:注意力机制 | 多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM等 | 即插即用系列,原创独家首发
💡💡💡本文改进内容:多维协作注意模块MCA,暴力涨点,效果秒杀ECA、SRM、CBAM,创新性十足,可直接作为创新点使用。 改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化】【小目标性能提升】【前沿...
YoloV8改进策略:BackBone改进|GCNet(独家原创)
,但在几个重要的视觉识别任务上几乎没有观察到准确率的下降。此外,我们还发现这个简化后的块与流行的压缩-激励(SE)网络[14]具有相似的结构。它们都通过从所有位置聚合的相同特征来加强原始特征,但在聚合策略、变换和增强函数的选择上有所不同。通过抽象这些函数,我们得出了一个将简化后的NL块和SE块统一起来的三步通用框架:(a)一个上下文建模模块,它将所有位置的特征聚合在一起以形成全局上下文特征;(b)一个...
YOLOv9改进策略 :注意力机制 | 注意力机制与卷积的完美融合 | 最新移动端高效网络架构 CloFormer
💡💡💡本文改进内容: 引入CloFormer 中的 AttnConv,上下文感知权重使得模型能够更好地适应输入内容。相比于局部自注意力机制,引入共享权重使得模型能够更好地处理高频信息,从而提高性能。 💡💡💡注意力机制与卷积的完美融合 AttnConv | 亲测在多个数据集能够实现涨点 改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新: 【原创自研模块】【多组合点优化】...
YOLOv9改进策略 :卷积魔改 | 感受野注意力卷积运算(RFAConv)
💡💡💡本文改进内容:感受野注意力卷积运算(RFAConv),解决卷积块注意力模块(CBAM)和协调注意力模块(CA)只关注空间特征,不能完全解决卷积核参数共享的问题 💡💡💡使用方法:代替YOLOv9中的卷积,使得更加关注感受野注意力,提升性能 💡💡💡RFAConv| 亲测在多个数据集能够实现大幅涨点,有的数据集达到3个点以上 改进结构图如下: 《YOLOv9魔术师专栏》将从以下各个方向进行创新:...
YoloV8改进策略:BackBone改进|EfficientVMamba(独家原创)
摘要 本文使用EfficientVMamba的主干网络替代YoloV8的主干网络,实现涨点。Mamba是今年比较火的主干网络,使用Mamba改进的论文比较容易被顶会接收,如果有发论文的同学,非常推荐使用。 论文:《EfficientVMamba:轻量级视觉Mamba的空洞选择性扫描》 https://arxiv.org/pdf/2403.09977.pdf 先前的轻量级模型开发努力主要集中在基于CN...
解释器模式构建风控策略的应用
文章目录 一、解释器模式在构建交易逻辑的优点二、解释器模式构建净值风控举例 一、解释器模式在构建交易逻辑的优点 易于理解和扩展:解释器模式将特定领域的问题分解为一系列可管理的规则或语法,并为每条规则创建一个解释器。这使得代码结构更清晰,易于理解和扩展。灵活性:解释器模式提供了一种灵活且可扩展的方式来处理和解释复杂的语言结构。通过定义不同的解释器,可以根据需求灵活地组合和调整规则,以满足不同的交易逻辑...
YOLOv9改进策略 :主干优化 | ConvNeXtV2:适应自监督学习,让 CNN “再一次强大”?
💡💡💡本文改进内容:完全卷积掩码自编码器框架 ConvNeXt V2,它显著提高了纯convnet在各种识别基准上的性能,包括ImageNet分类,COCO目标检测和ADE20k分割。还提供了各种尺寸的预训练ConvNeXt v2模型,从而在ImageNet上具有76.7%精度的3.7M Atto model和88.9%精度的650M huge model。 改进结构图如下...
Redis--缓存常用的 3 种读写策略
rite Through Pattern 中服务端把 cache 视为主要数据存储,从中读取数据并将数据写入其中。cache 服务负责将此数据读取和写入 db,从而减轻了应用程序的职责。 这种缓存读写策略小伙伴们应该也发现了在平时在开发过程中非常少见。抛去性能方面的影响,大概率是因为我们经常使用的分布式缓存 Redis 并没有提供 cache 将数据写入 db 的功能。 写(Write Through...