基于卷积神经网络(CNN)的深度迁移学习在声发射(AE)监测螺栓连接状况的应用

,从而识别螺栓的紧固级别。详细步骤如下: 2.3.1 模型选择 选择合适的深度学习模型进行分类。本研究中使用了四种不同的模型架构: GoogleNet: 一种具有“inception 模块”的深度卷积神经网络,能够有效地提取图像特征。ResNet18: 一种具有残差连接的深度卷积神经网络,能够有效地解决梯度消失问题。MobileNetV2: 一种轻量级的深度卷积神经网络,适合在移动设备上进行部署。Effi...

【猫狗识别系统】图像识别Python+TensorFlow+卷积神经网络算法+人工智能深度学习

搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。 一、前言 本研究中,我们开发了一个基于深度学习的猫狗识别系统,使用了TensorFlow框架下的MobileNetV2轻量级卷积神经网络模型。MobileNetV2模型以其高效的结构和较低的计算成本而闻名,非常适合在移动和嵌入式设备上使用。通过对数千张标记好的猫狗图片进行训练,最终生成了一个准确率较高的模型文件(H5格式),可以有效地...

深度神经网络——什么是 CNN(卷积神经网络)?

Facebook和Instagram自动检测图像中的面孔,Google通过上传照片搜索相似图片的功能,这些都是计算机视觉技术的实例,它们背后的核心技术是卷积神经网络(CNN)。那么,CNN究竟是什么呢?接下来,我们将深入探讨CNN的架构,揭示它们是如何工作的。 CNN是一种深度学习模型,它模仿了人类大脑处理视觉信息的方式。它们之所以在图像识别等领域表现出色,是因为它们能够自动从图像中学习复杂的特征。CN...

深度神经网络——什么是梯度下降?

如果对神经网络的训练有所了解,那么很可能已经听说过“梯度下降”这一术语。梯度下降是提升神经网络性能、降低其误差率的主要技术手段。然而,对于机器学习新手来说,梯度下降的概念可能稍显晦涩。本文旨在帮助您直观理解梯度下降的工作原理。 梯度下降作为一种优化算法,其核心在于通过调整网络的参数来优化性能,目标是最小化网络预测与实际或期望值(即损失)之间的差距。梯度下降从参数的初始值出发,利用基于微积分的计算方法,对...

神经网络的工程基础(二)——随机梯度下降法|文末送书

相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 本文涉及到的代码链接如下:regression2chatgpt/ch06_optimizer/stochastic_gradient_descent.ipynb 本文将讨论利用PyTorch实现随机梯度下降法的细节。 关于大语言模型的内容,推荐参考这个专栏。 内容大纲 相关说明一、随机梯...

深度神经网络——什么是生成式人工智能?

工智能可以利用现有的文本、音频文件或图像来创建新内容。 它使计算机能够检测与输入相关的底层模式,以便生成类似的内容。 生成式人工智能通过各种技术实现这一过程: 生成对抗网络(GAN): GAN 由两个神经网络组成。 有一个生成器和一个鉴别器网络,它们相互竞争以在两者之间建立平衡。 生成器网络生成类似于源数据的新数据或内容。 鉴别器网络区分源数据和生成的数据,以识别更接近原始数据的数据。变形金刚: Tran...

深度神经网络——什么是混淆矩阵?

概述 混淆矩阵是一种在机器学习和数据科学中广泛使用的分析工具,用于评估分类模型的性能。它通过比较实际类别和模型预测的类别来提供模型性能的详细信息。以下是混淆矩阵的一些关键点: 结构:混淆矩阵是一个表格,通常有两行两列(对于二分类问题)或更多行和列(对于多分类问题)。每一行代表实际类别,每一列代表预测类别。 元素:矩阵中的元素表示不同类别的样本数量。具体来说: 真阳性(TP):正确预测为正类的样本数量。假...

深度神经网络——什么是边缘人工智能和边缘计算

1.概述 边缘人工智能是人工智能最引人注目的新领域之一,它的目标是让人们运行人工智能流程,而不必担心隐私或因数据传输而导致的速度减慢。 边缘人工智能正在使人工智能得到更广泛、更广泛的使用,让智能设备无需访问云即可快速对输入做出反应。 虽然这是 Edge AI 的快速定义,但让我们花点时间通过探索使其成为可能的技术并查看 Edge AI 的一些用例来更好地了解 Edge AI。 2.什么是边缘计算? 为了...

基于神经网络的柯氏音血压计

以及使用心搏周期估计进行分割。然后将每个序列中的每个片段标记为1)收缩后和舒张前(AB)或2)收缩前或舒张后(BA),从而实现二元序列到序列的分类问题。为了解决由此产生的序列到序列分类问题,将一维卷积神经网络(CNNs)和递归神经网络(RNNs)相结合,开发了一种算法。然后,与收缩压和舒张压相关的节段(SBP和DBP)被识别为输出目标序列从BA类切换到AB类,然后从AB类切换到BA类的节段。最后,通过将切...

深度神经网络——图像分类如何工作?

支持向量机能够通过使用称为核技巧的技术进行非线性分类。 虽然 SVM 分类器通常非常准确,但 SVM 分类器的一个重大缺点是它们往往受到大小和速度的限制,随着大小的增加,速度会受到影响。 多层感知器(神经网络) 多层感知器,也称为神经网络模型,是受人脑启发的机器学习算法。 多层感知器由相互连接在一起的各个层组成,就像人脑中的神经元连接在一起一样。 神经网络对输入特征与数据类别的关系做出假设,并且这些假设在...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.006038(s)
2024-11-21 17:33:49 1732181629