C/C++ Adaline自适应线性神经网络算法详解及源码
专栏导航: 标题:C/C++ Adaline自适应线性神经网络算法详解及源码 目录 1. 简介2. 原理3. 实现步骤3.1 初始化权重3.2 前向传播3.3 计算误差3.4 更新权重3.5 重复步骤2-4 4. 源码示例5. 总结 1. 简介 Adaline(自适应线性神经元)是一种用于模式分类的线性神经网络。它与感知器类似,但具有一些改进,如使用连续的激活函数和梯度下降算法进行权重调整。本文将介绍A...
深度神经网络——什么是降维?
引言 什么是降维? 降维是用于降低数据集维度的过程,采用许多特征并将它们表示为更少的特征。 例如,降维可用于将二十个特征的数据集减少到仅有几个特征。 降维通常用于无监督学习任务 降维是一个用于降低数据集维度的过程,采用许多特征并将它们表示为更少的特征。 例如,降维可用于将二十个特征的数据集减少到仅有几个特征。 降维常用于 无监督学习 从许多功能中自动创建类的任务。 为了更好地理解 为什么以及如何使用降维...
基于负相关误差函数的4集成BP神经网络matlab建模与仿真
2 = zeros(Len,KER); while(jj<=Len) for k=1:No; d(k)=T(jj); end for i=1:NI; x(i)=P(jj,i); end %集成多个BP神经网络 for bpj = 1:KER for j=1:Nh%BP前向 net=0; for i=1:NI net=net+x(i)*W0(i,j,bpj); %加权和∑X(i)V(i) end y(j)=...
基于卷积神经网络(CNN)的深度迁移学习在声发射(AE)监测螺栓连接状况的应用
,从而识别螺栓的紧固级别。详细步骤如下: 2.3.1 模型选择 选择合适的深度学习模型进行分类。本研究中使用了四种不同的模型架构: GoogleNet: 一种具有“inception 模块”的深度卷积神经网络,能够有效地提取图像特征。ResNet18: 一种具有残差连接的深度卷积神经网络,能够有效地解决梯度消失问题。MobileNetV2: 一种轻量级的深度卷积神经网络,适合在移动设备上进行部署。Effi...
【猫狗识别系统】图像识别Python+TensorFlow+卷积神经网络算法+人工智能深度学习
搭建了一个Web网页端可视化操作界面。实现用户上传一张图片识别其名称。 一、前言 本研究中,我们开发了一个基于深度学习的猫狗识别系统,使用了TensorFlow框架下的MobileNetV2轻量级卷积神经网络模型。MobileNetV2模型以其高效的结构和较低的计算成本而闻名,非常适合在移动和嵌入式设备上使用。通过对数千张标记好的猫狗图片进行训练,最终生成了一个准确率较高的模型文件(H5格式),可以有效地...
深度神经网络——什么是 CNN(卷积神经网络)?
Facebook和Instagram自动检测图像中的面孔,Google通过上传照片搜索相似图片的功能,这些都是计算机视觉技术的实例,它们背后的核心技术是卷积神经网络(CNN)。那么,CNN究竟是什么呢?接下来,我们将深入探讨CNN的架构,揭示它们是如何工作的。 CNN是一种深度学习模型,它模仿了人类大脑处理视觉信息的方式。它们之所以在图像识别等领域表现出色,是因为它们能够自动从图像中学习复杂的特征。CN...
深度神经网络——什么是梯度下降?
如果对神经网络的训练有所了解,那么很可能已经听说过“梯度下降”这一术语。梯度下降是提升神经网络性能、降低其误差率的主要技术手段。然而,对于机器学习新手来说,梯度下降的概念可能稍显晦涩。本文旨在帮助您直观理解梯度下降的工作原理。 梯度下降作为一种优化算法,其核心在于通过调整网络的参数来优化性能,目标是最小化网络预测与实际或期望值(即损失)之间的差距。梯度下降从参数的初始值出发,利用基于微积分的计算方法,对...
神经网络的工程基础(二)——随机梯度下降法|文末送书
相关说明 这篇文章的大部分内容参考自我的新书《解构大语言模型:从线性回归到通用人工智能》,欢迎有兴趣的读者多多支持。 本文涉及到的代码链接如下:regression2chatgpt/ch06_optimizer/stochastic_gradient_descent.ipynb 本文将讨论利用PyTorch实现随机梯度下降法的细节。 关于大语言模型的内容,推荐参考这个专栏。 内容大纲 相关说明一、随机梯...
深度神经网络——什么是生成式人工智能?
工智能可以利用现有的文本、音频文件或图像来创建新内容。 它使计算机能够检测与输入相关的底层模式,以便生成类似的内容。 生成式人工智能通过各种技术实现这一过程: 生成对抗网络(GAN): GAN 由两个神经网络组成。 有一个生成器和一个鉴别器网络,它们相互竞争以在两者之间建立平衡。 生成器网络生成类似于源数据的新数据或内容。 鉴别器网络区分源数据和生成的数据,以识别更接近原始数据的数据。变形金刚: Tran...
深度神经网络——什么是混淆矩阵?
概述 混淆矩阵是一种在机器学习和数据科学中广泛使用的分析工具,用于评估分类模型的性能。它通过比较实际类别和模型预测的类别来提供模型性能的详细信息。以下是混淆矩阵的一些关键点: 结构:混淆矩阵是一个表格,通常有两行两列(对于二分类问题)或更多行和列(对于多分类问题)。每一行代表实际类别,每一列代表预测类别。 元素:矩阵中的元素表示不同类别的样本数量。具体来说: 真阳性(TP):正确预测为正类的样本数量。假...