深度学习基础——卷积神经网络的感受野、参数量、计算量

深度学习基础——卷积神经网络的感受野、参数量、计算量 深度学习在图像处理领域取得了巨大的成功,其中卷积神经网络(Convolutional Neural Networks,CNN)是一种非常重要的网络结构。本文将介绍卷积神经网络的三个重要指标:感受野、参数量和计算量。首先,会对这些指标进行定义,然后介绍如何计算它们,并通过Python实现示例代码进行可视化展示。 1. 定义 1.1 感受野(Recept...

基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测 完整代码:基于双向长短期神经网络BILSTM的分类预测,基于GRU神经网络的分类预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89114990 效果图 结...

基于双向长短期神经网络的居民用电功率预测,基于gru神经网络的居民用电功率预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络的居民用电功率预测,基于gru神经网络的居民用电功率预测 完整代码:基于双向长短期神经网络的居民用电功率预测,基于gru神经网络的居民用电功率预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89124845 效...

政安晨:【深度学习神经网络基础】(八)—— 神经网络评估回归与模拟退火训练

目录 简述 评估回归 模拟退火训练 简述 深度学习神经网络的评估回归是一种用于评估网络性能的方法。 在回归问题中,神经网络被用于将输入数据映射到连续的输出。 模拟退火是一种用于训练深度学习神经网络的优化算法。 在模拟退火训练中,初始温度被设置为一个比较高的值,然后通过不断迭代降低温度,从而控制系统的状态在搜索空间中移动的程度。每次迭代中,根据能量差和当前温度计算一个概率,用于决定是否接受新的状态。这样,模...

基于双向长短期神经网络bilstm的时间序列预测,基于gru神经网络的时间序列预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络bilstm的时间序列预测,基于gru神经网络的时间序列预测 完整代码:基于双向长短期神经网络bilstm的时间序列预测,基于gru神经网络的时间序列预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/891276...

基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测 完整代码:基于双向长短期神经网络BILSTM的指数预测,基于gru神经网络的指数预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89127622 效果图 结...

用 PyTorch 构建液态神经网络(LNN)

用 PyTorch 构建液态神经网络(LNN) 文章目录 什么是液态神经网络为什么需要液态神经网络LNN 与 RNN 的区别用 PyTorch 实现 LNNStep 1. 导入必要的库Step 2. 定义网络架构Step 3. 实现 ODE 求解器Step 4. 定义训练逻辑 LNN 的缺陷总结 什么是液态神经网络 2020年,麻省理工学院(MIT)的两名研究人员带领团队推出了一种基于现实生活中的自然智...

基于BP神经网络的金融序列预测matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于BP神经网络的金融序列预测,仿真输出预测结果,预测误差以及训练曲线。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运行 3.核心程序 ......................................................................

政安晨:【深度学习神经网络基础】(十)—— 反向传播网络中计算输出节点增量与计算剩余节点增量

目录 简述 二次误差函数 交叉熵误差函数 计算剩余节点增量 简述 为神经网络中的每个节点(神经元)计算一个常数值。我们将从输出节点开始,然后逐步通过神经网络反向传播。“反向传播”一词就来自这个过程。我们最初计算输出神经元的误差,然后通过神经网络向后传播这些误差。节点增量是我们将为每个节点计算的值。层增量也描述了该值,因为我们可以一次计算一层的增量。在计算输出节点或内部节点时,确定节点增量的方法可能会有所不...

基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测

目录 背影 摘要 LSTM的基本定义 LSTM实现的步骤 BILSTM神经网络 基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测 完整代码:基于双向长短期神经网络BILSTM的收盘预测,基于gru神经网络的收盘预测(代码完整,数据齐全)资源-CSDN文库 https://download.csdn.net/download/abc991835105/89115078 效果图 结...
© 2024 LMLPHP 关于我们 联系我们 友情链接 耗时0.003272(s)
2024-11-21 21:34:54 1732196094