1、numpy库简介:
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。
2、numpy库使用:
注:由于深度学习中存在大量的矩阵运算,实践中也主要关注此点。
运行环境:Python3
(1)矩阵(matrix)、列表(list)、数组(array)的转换
list变成array: np.array(A)
list变为matrix:np.mat(A)
array和matrix相互转换: np. mat(A),np. array(A)
matrix和array变换为list: A.tolist()
例:
import numpy as np #导入NumPy库
if __name__ == "__main__":
a = [[, , ], [, , ]] # 列表
b = np.array(a) # 列表转数组
c = np.mat(a) # 列表转矩阵
d = np.array(c) # 矩阵转数组
e = np.mat(d) # 数组转矩阵
f = e.tolist() # 矩阵转列表
(2) 矩阵创建
import numpy as np #导入NumPy库
if __name__ == "__main__":
a =[,,] #列表
a =np.array(a) #数组
a1=np.mat(a) #创建一个1*3的矩阵 或 a2=np.mat([, , ])
a2=np.mat([[,],[,]]) #创建一个2*2的矩阵
b1=a2[,:] #提取第 行
b2=a2[:,] #提取第 列
c1=np.mat(np.zeros((,))) #创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(,)
c2=np.mat(np.ones((,))) #创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int
c3=np.mat(np.eye(,,dtype=int)) #产生一个2*2的对角矩阵,dtype=int
c4=np.mat(np.diag([,,])) #生成一个对角线为1、、3的对角矩阵
(3)矩阵运算
import numpy as np #导入NumPy库
if __name__ == "__main__":
#矩阵相乘
a1=np.mat([,]);
a2=np.mat([[],[]]);
a3=a1*a2 #*2的矩阵乘以2*1的矩阵,得到1*1的矩阵
#矩阵点乘——矩阵对应元素相乘
b1=np.mat([,]);
b2=np.mat([,]);
b3=np.multiply(b1,b2)
#矩阵求逆
c1=np.mat(np.eye(,)*0.5)
c2=c1.I
#矩阵转置
d1=np.mat([[,],[,]])
d2=d1.T
#矩阵求和
e1=np.mat([[,],[,]])
e2=e1.sum(axis=) #列和,这里得到的是1*2的矩阵
e3=e1.sum(axis=) #行和,这里得到的是2*1的矩阵
(4)计算矩阵最大、最小值和索引
import numpy as np #导入NumPy库
if __name__ == "__main__":
a1=np.mat([[,],[,],[,]]) #得到的是3*2的矩阵
a2=a1.max() #计算a1矩阵中所有元素的最大值,这里得到的结果是一个数值
a3=np.max(a1[:,]) #计算第2列的最大值,这里得到的是一个数值
a4=a1[,:].max() #计算第2行的最大值,这里得到的是一个数值
a5=np.max(a1,) #计算每列的最大值,这里得到是一个1*2矩阵
a6=np.max(a1,) #计算每行的最大值,这里得到是一个3*1矩阵
a7=np.argmax(a1,) #计算每列的最大值对应在该列中的索引,这里得到是一个1*2矩阵
a8=np.argmax(a1[,:]) #计算第二行中最大值对应在该行的索引,这里得到的是一个数值
(5)矩阵的合并
import numpy as np #导入NumPy库
if __name__ == "__main__":
a=np.mat(np.ones((,))) #得到2*2全1矩阵
b= np.mat(np.eye()) #得到2*2对角单位矩阵
c= np.vstack((a,b)) #按列合并,即增加行数,得到4*2矩阵
d= np.hstack((a,b)) #按行合并,即行数不变,扩展列,得到2*4矩阵
(6)读取矩阵行列数
import numpy as np #导入NumPy库
if __name__ == "__main__":
a=np.shape(np.eye())[] #读出行数,得到1个数
b=np.shape(np.eye())[] #读出列数,得到1个数
m, n = np.shape(np.eye()) #读出行列数,得到2个数
(7)随机数
import numpy as np #导入NumPy库
import random #导入随机数random库
if __name__ == "__main__":
a = random.randint(,) #用于生成一个指定范围内的整数
a1 = random.uniform(,) #生成一个指定范围内的随机符点数
a2 = random.randrange(, , ) #从指定范围内,按指定基数递增的集合中 获取一个随机数
a3 = random.shuffle(["a", "b", "c"] ) #用于将一个列表中的元素打乱 b = np.random.random(size=(,)) #生成2*4浮点数随机数组,随机数的值位于0到1之间
b1 = np.random.randint(,,size=(,)) #生成3*3整数随机数组,随机数的值位于1到100之间
b2 = np.random.binomial(, 0.5, size=(,)) #生成2*3二项分布随机数组,一次试验抛5次硬币朝上的硬币数,做2*3次试验
(7)其他矩阵处理方法
import numpy as np #导入NumPy库
if __name__ == "__main__":
a=np.mat([[,,],[,,],[,,]]) #得到的是3*3的矩阵
a1 = np.mean(a,axis=) #参数axis=0表示对矩阵的每一列求均值,得到1*3矩阵
a2 = np.cov(a,rowvar=) #计算协方差矩阵,得到3*3数组
a3,a4 = np.linalg.eig(a) #计算矩阵的特征值和特征向量,分别得到3*1数组,*3矩阵
a5 = np.argsort(a3) #对特征进行排序(升序),函数返回的是原索引值,得到3*1数组
参考文献
[1] http://www.runoob.com/python3/python3-tutorial.html
[2] https://www.cnblogs.com/chamie/p/4870078.html