前言
md5
func GetMd5String(s string) string {
h := md5.New()
h.Write([]byte(s))
return hex.EncodeToString(h.Sum(nil))
}
hmac
//key随意设置 data 要加密数据
func Hmac(key, data string) string {
hash:= hmac.New(md5.New, []byte(key)) // 创建对应的md5哈希加密算法
hash.Write([]byte(data))
return hex.EncodeToString(hash.Sum([]byte("")))
}
func HmacSha256(key, data string) string {
hash:= hmac.New(sha256.New, []byte(key)) //创建对应的sha256哈希加密算法
hash.Write([]byte(data))
return hex.EncodeToString(hash.Sum([]byte("")))
}
sha1
func Sha1(data string) string {
sha1 := sha1.New()
sha1.Write([]byte(data))
return hex.EncodeToString(sha1.Sum([]byte("")))
}
Crypto加密
package main
import (
"fmt"
"golang.org/x/crypto/bcrypt"
)
func main() {
password := "test"
hash,err := bcrypt.GenerateFromPassword([]byte(password),0)
fmt.Println(string(hash),err)
// 密码如果校验成功会返回Nil
fmt.Println(bcrypt.CompareHashAndPassword(hash,[]byte("youmen18")))
}
AES
AES有五种加密模式
/*
电码本模式(Electronic Codebook Book (ECB))、
密码分组链接模式(Cipher Block Chaining (CBC))、
计算器模式(Counter (CTR))、
密码反馈模式(Cipher FeedBack (CFB))
输出反馈模式(Output FeedBack (OFB))
*/
ECB模式
出于安全考虑,golang默认并不支持ECB模式。
package main
import (
"crypto/aes"
"fmt"
)
func AESEncrypt(src []byte, key []byte) (encrypted []byte) {
cipher, _ := aes.NewCipher(generateKey(key))
length := (len(src) + aes.BlockSize) / aes.BlockSize
plain := make([]byte, length*aes.BlockSize)
copy(plain, src)
pad := byte(len(plain) - len(src))
for i := len(src); i < len(plain); i++ {
plain[i] = pad
}
encrypted = make([]byte, len(plain))
// 分组分块加密
for bs, be := 0, cipher.BlockSize(); bs <= len(src); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
cipher.Encrypt(encrypted[bs:be], plain[bs:be])
}
return encrypted
}
func AESDecrypt(encrypted []byte, key []byte) (decrypted []byte) {
cipher, _ := aes.NewCipher(generateKey(key))
decrypted = make([]byte, len(encrypted))
//
for bs, be := 0, cipher.BlockSize(); bs < len(encrypted); bs, be = bs+cipher.BlockSize(), be+cipher.BlockSize() {
cipher.Decrypt(decrypted[bs:be], encrypted[bs:be])
}
trim := 0
if len(decrypted) > 0 {
trim = len(decrypted) - int(decrypted[len(decrypted)-1])
}
return decrypted[:trim]
}
func generateKey(key []byte) (genKey []byte) {
genKey = make([]byte, 16)
copy(genKey, key)
for i := 16; i < len(key); {
for j := 0; j < 16 && i < len(key); j, i = j+1, i+1 {
genKey[j] ^= key[i]
}
}
return genKey
}
func main() {
source:="hello world"
fmt.Println("原字符:",source)
//16byte密钥
key:="1443flfsaWfdas"
encryptCode:=AESEncrypt([]byte(source),[]byte(key))
fmt.Println("密文:",string(encryptCode))
decryptCode:=AESDecrypt(encryptCode,[]byte(key))
fmt.Println("解密:",string(decryptCode))
}
CBC模式
package main
import(
"bytes"
"crypto/aes"
"fmt"
"crypto/cipher"
"encoding/base64"
)
func main() {
orig := "hello world"
key := "0123456789012345"
fmt.Println("原文:", orig)
encryptCode := AesEncrypt(orig, key)
fmt.Println("密文:" , encryptCode)
decryptCode := AesDecrypt(encryptCode, key)
fmt.Println("解密结果:", decryptCode)
}
func AesEncrypt(orig string, key string) string {
// 转成字节数组
origData := []byte(orig)
k := []byte(key)
// 分组秘钥
// NewCipher该函数限制了输入k的长度必须为16, 24或者32
block, _ := aes.NewCipher(k)
// 获取秘钥块的长度
blockSize := block.BlockSize()
// 补全码
origData = PKCS7Padding(origData, blockSize)
// 加密模式
blockMode := cipher.NewCBCEncrypter(block, k[:blockSize])
// 创建数组
cryted := make([]byte, len(origData))
// 加密
blockMode.CryptBlocks(cryted, origData)
return base64.StdEncoding.EncodeToString(cryted)
}
func AesDecrypt(cryted string, key string) string {
// 转成字节数组
crytedByte, _ := base64.StdEncoding.DecodeString(cryted)
k := []byte(key)
// 分组秘钥
block, _ := aes.NewCipher(k)
// 获取秘钥块的长度
blockSize := block.BlockSize()
// 加密模式
blockMode := cipher.NewCBCDecrypter(block, k[:blockSize])
// 创建数组
orig := make([]byte, len(crytedByte))
// 解密
blockMode.CryptBlocks(orig, crytedByte)
// 去补全码
orig = PKCS7UnPadding(orig)
return string(orig)
}
//补码
//AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。
func PKCS7Padding(ciphertext []byte, blocksize int) []byte {
padding := blocksize - len(ciphertext)%blocksize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(ciphertext, padtext...)
}
//去码
func PKCS7UnPadding(origData []byte) []byte {
length := len(origData)
unpadding := int(origData[length-1])
return origData[:(length - unpadding)]
}
CRT模式
package main
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"fmt"
)
//加密
func aesCtrCrypt(plainText []byte, key []byte) ([]byte, error) {
//1. 创建cipher.Block接口
block, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
//2. 创建分组模式,在crypto/cipher包中
iv := bytes.Repeat([]byte("1"), block.BlockSize())
stream := cipher.NewCTR(block, iv)
//3. 加密
dst := make([]byte, len(plainText))
stream.XORKeyStream(dst, plainText)
return dst, nil
}
func main() {
source:="hello world"
fmt.Println("原字符:",source)
key:="1443flfsaWfdasds"
encryptCode,_:=aesCtrCrypt([]byte(source),[]byte(key))
fmt.Println("密文:",string(encryptCode))
decryptCode,_:=aesCtrCrypt(encryptCode,[]byte(key))
fmt.Println("解密:",string(decryptCode))
}
CFB模式
package main
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
)
func AesEncryptCFB(origData []byte, key []byte) (encrypted []byte) {
block, err := aes.NewCipher(key)
if err != nil {
//panic(err)
}
encrypted = make([]byte, aes.BlockSize+len(origData))
iv := encrypted[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
//panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(encrypted[aes.BlockSize:], origData)
return encrypted
}
func AesDecryptCFB(encrypted []byte, key []byte) (decrypted []byte) {
block, _ := aes.NewCipher(key)
if len(encrypted) < aes.BlockSize {
panic("ciphertext too short")
}
iv := encrypted[:aes.BlockSize]
encrypted = encrypted[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
stream.XORKeyStream(encrypted, encrypted)
return encrypted
}
func main() {
source:="hello world"
fmt.Println("原字符:",source)
key:="ABCDEFGHIJKLMNO1"//16位
encryptCode:=AesEncryptCFB([]byte(source),[]byte(key))
fmt.Println("密文:",hex.EncodeToString(encryptCode))
decryptCode:=AesDecryptCFB(encryptCode,[]byte(key))
fmt.Println("解密:",string(decryptCode))
}
OFB模式
package main
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
)
func aesEncryptOFB( data[]byte,key []byte) ([]byte, error) {
data = PKCS7Padding(data, aes.BlockSize)
block, _ := aes.NewCipher([]byte(key))
out := make([]byte, aes.BlockSize + len(data))
iv := out[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
return nil, err
}
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(out[aes.BlockSize:], data)
return out, nil
}
func aesDecryptOFB( data[]byte,key []byte) ([]byte, error) {
block, _ := aes.NewCipher([]byte(key))
iv := data[:aes.BlockSize]
data = data[aes.BlockSize:]
if len(data) % aes.BlockSize != 0 {
return nil, fmt.Errorf("data is not a multiple of the block size")
}
out := make([]byte, len(data))
mode := cipher.NewOFB(block, iv)
mode.XORKeyStream(out, data)
out= PKCS7UnPadding(out)
return out, nil
}
//补码
//AES加密数据块分组长度必须为128bit(byte[16]),密钥长度可以是128bit(byte[16])、192bit(byte[24])、256bit(byte[32])中的任意一个。
func PKCS7Padding(ciphertext []byte, blocksize int) []byte {
padding := blocksize - len(ciphertext)%blocksize
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
return append(ciphertext, padtext...)
}
//去码
func PKCS7UnPadding(origData []byte) []byte {
length := len(origData)
unpadding := int(origData[length-1])
return origData[:(length - unpadding)]
}
func main() {
source:="hello world"
fmt.Println("原字符:",source)
key:="1111111111111111"//16位 32位均可
encryptCode,_:=aesEncryptOFB([]byte(source),[]byte(key))
fmt.Println("密文:",hex.EncodeToString(encryptCode))
decryptCode,_:=aesDecryptOFB(encryptCode,[]byte(key))
fmt.Println("解密:",string(decryptCode))
}
RSA加密简介
rsa加密算法简史
rsa加密算法实现原理
必备数学知识
素数
互质数
常见的互质数判断方法主要有以下几种:
/*
1、两个不同的质数一定是互质数。例如,2与7、13与19。
2、一个质数,另一个不为它的倍数,这两个数为互质数。例如,3与10、5与 26。
3、相邻的两个自然数是互质数。如 15与 16。
4、相邻的两个奇数是互质数。如 49与 51。
5、较大数是质数的两个数是互质数。如97与88。
6、小数是质数,大数不是小数的倍数的两个数是互质数。例如 7和 16。
7、2和任何奇数是互质数。例如2和87。
8、1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。
9、辗转相除法。
*/
指数运算
/*
指数运算又称乘方计算,计算结果称为幂。nm指将n自乘m次。把nm看作乘方的结果,叫做”n的m次幂”或”n的m次方”。其中,n称为“底数”,m称为“指数”。
*/
模运算
/*
模运算即求余运算。“模”是“Mod”的音译。和模运算紧密相关的一个概念是“同余”。数学上,当两个整数除以同一个正整数,若得相同余数,则二整数同余。
两个整数a,b,若它们除以正整数m所得的余数相等,则称a,b对于模m同余,记作: a ≡ b (mod m);读作:a同余于b模m,或者,a与b关于模m同余。例如:26 ≡ 14 (mod 12)。
*/
RSA加密算法
公钥和密钥的产生
/*
1、随意选择两个大的质数p和q,p不等于q,计算N=pq。
2、根据欧拉函数,求得r = (p-1)(q-1)
3、选择一个小于 r 的整数 e,求得 e 关于模 r 的模反元素,命名为d。(模反元素存在,当且仅当e与r互质)
4、将 p 和 q 的记录销毁。
(N,e)是公钥,(N,d)是私钥。Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。
*/
加密消息
解密消息
解码的原理是
签名消息
Golang加密解密之RSA
概要
创建私钥
openssl genrsa -out private.pem 1024
//密钥长度,1024觉得不够安全的话可以用2048,但是代价也相应增大
创建公钥
openssl rsa -in private.pem -pubout -out public.pem
// 这样便生产了密钥。
Go RSA加密
- rsa加解密, 必须会去查crypto/ras这个包
Package rsa implements RSA encryption as specified in PKCS#1.
EncryptOAEP和DecryptOAEP
EncryptPKCS1v15和DecryptPKCS1v15
PublicKey和PrivateKey两个类型分别代表公钥和私钥,关于这两个类型中成员该怎么设置,这涉及到RSA加密算法,本文中,这两个类型的实例通过解析文章开头生成的密钥得到。
2 . 解析密钥得到PublicKey和PrivateKey的实例
/*
func Decode(data []byte) (p *Block, rest []byte)
*/
在x509包中,有一个函数:
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error)
func ParsePKCS1PrivateKey(der []byte) (key *rsa.PrivateKey, err error)
返回的就是rsa.PrivateKey
加密解密实现
加密
func RsaEncrypt(origData []byte) ([]byte, error) {
block, _ := pem.Decode(publicKey)
if block == nil {
return nil, errors.New("public key error")
}
pubInterface, err := x509.ParsePKIXPublicKey(block.Bytes)
if err != nil {
return nil, err
}
pub := pubInterface.(*rsa.PublicKey)
return rsa.EncryptPKCS1v15(rand.Reader, pub, origData)
}
解密
func RsaDecrypt(ciphertext []byte) ([]byte, error) {
block, _ := pem.Decode(privateKey)
if block == nil {
return nil, errors.New("private key error!")
}
priv, err := x509.ParsePKCS1PrivateKey(block.Bytes)
if err != nil {
return nil, err
}
return rsa.DecryptPKCS1v15(rand.Reader, priv, ciphertext)
}
使用例子
package main
import (
"fmt"
)
func main() {
data, err := RsaEncrypt([]byte("test"))
if err != nil {
panic(err)
}
origData, err := RsaDecrypt(data)
if err != nil {
panic(err)
}
fmt.Println(string(origData))
}
// 此例子是加密完test后立马解密
参考: