Energy Awareness Scheduler是由ARM和Linaro开发的新的linux kernel调度器。

原先CFS调度器是基于policy进行调度,并有不同的吞吐量。例如,有一个新的task创建,同时也有一个idle cpu时,CFS始终会把新的task放到这个idle cpu上运行。但是,这样对节省功耗来说,并不是一个最好的决定。而EAS就是为了解决这样的问题。在不影响性能的前提下,EAS会在调度时实现节省功耗。

从SDM845开始,QTI在EAS基础上进行了一些修改,以满足移动市场的需要。所以QTI在EAS基础上添加了一些feature,来获得更好的性能和功耗。

QTI EAS学习之find_energy_efficient_cpu-LMLPHP

Energy model

 在dts中,针对不同的cpu平台,已定义好不同的energy model。模型主要是由【频率,能量】的数组构成,对应了CPU和cluster不同的OOP(Operating Performance Point);同时也提供了不同idle state的能量消耗:idle cost。

CPU0: cpu@0 {
            device_type = "cpu";
            compatible = "arm,armv8";
            reg = <0x0 0x0>;
            enable-method = "psci";
            efficiency = <1024>;
            cache-size = <0x8000>;
            cpu-release-addr = <0x0 0x90000000>;
            qcom,lmh-dcvs = <&lmh_dcvs0>;
            #cooling-cells = <2>;
            next-level-cache = <&L2_0>;
            sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>;  //小核都用CPU_COST_0 CLUSTER_COST_0
 。。。。。。
        CPU4: cpu@400 {
            device_type = "cpu";
            compatible = "arm,armv8";
            reg = <0x0 0x400>;
            enable-method = "psci";
            efficiency = <1740>;
            cache-size = <0x20000>;
            cpu-release-addr = <0x0 0x90000000>;
            qcom,lmh-dcvs = <&lmh_dcvs1>;
            #cooling-cells = <2>;
            next-level-cache = <&L2_400>;
            sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>;  //大核都用CPU_COST_1 CLUSTER_COST_1
。。。。。。。

对应的数组如下,

    energy_costs: energy-costs {
        compatible = "sched-energy";

        CPU_COST_0: core-cost0 {
            busy-cost-data = <
                 300000   31
                 422400   38
                 499200   42
                 576000   46
                 652800   51
                 748800   58
                 825600   64
                 902400   70
                 979200   76
                1056000   83
                1132800   90
                1209600   97
                1286400  105
                1363200  114
                1440000  124
                1516800  136
                1593600  152
                1651200  167 /* speedbin 0,1 */
                1670400  173 /* speedbin 2 */
                1708800  186 /* speedbin 0,1 */
                1747200  201 /* speedbin 2 */
            >;
            idle-cost-data = <
                22 18 14 12
            >;
        };
        CPU_COST_1: core-cost1 {
            busy-cost-data = <
                300000   258
                422400   260
                499200   261
                576000   263
                652800   267
                729600   272
                806400   280
                883200   291
                960000   305
                   1036800   324
                   1113600   348
                   1190400   378
                   1267200   415
                   1344000   460
                   1420800   513
                   1497600   576
                   1574400   649
                   1651200   732
                   1728000   824
                   1804800   923
                   1881600  1027
                   1958400  1131
                   2035000  1228 /* speedbin 1,2 */
                   2092000  1290 /* speedbin 1 */
                   2112000  1308 /* speedbin 2 */
                   2208000  1363 /* speedbin 2 */
            >;
            idle-cost-data = <
                100 80 60 40
            >;
        };
        CLUSTER_COST_0: cluster-cost0 {
            busy-cost-data = <
                 300000   3
                 422400   4
                 499200   4
                 576000   4
                 652800   5
                 748800   5
                 825600   6
                 902400   7
                 979200   7
                1056000   8
                1132800   9
                1209600   9
                1286400  10
                1363200  11
                1440000  12
                1516800  13
                1593600  15
                1651200  17 /* speedbin 0,1 */
                1670400  19 /* speedbin 2 */
                1708800  21 /* speedbin 0,1 */
                1747200  23 /* speedbin 2 */
            >;
            idle-cost-data = <
                4 3 2 1
            >;
        };
        CLUSTER_COST_1: cluster-cost1 {
            busy-cost-data = <
                300000  24
                422400  24
                499200  25
                576000  25
                652800  26
                729600  27
                806400  28
                883200  29
                960000  30
                   1036800  32
                   1113600  34
                   1190400  37
                   1267200  40
                   1344000  45
                   1420800  50
                   1497600  57
                   1574400  64
                   1651200  74
                   1728000  84
                   1804800  96
                   1881600 106
                   1958400 113
                   2035000 120 /* speedbin 1,2 */
                   2092000 125 /* speedbin 1 */
                   2112000 127 /* speedbin 2 */
                   2208000 130 /* speedbin 2 */
            >;
            idle-cost-data = <
                4 3 2 1
            >;
        };
    }; /* energy-costs */

在代码kernel/sched/energy.c中遍历所有cpu,并读取dts中的数据

    for_each_possible_cpu(cpu) {
        cn = of_get_cpu_node(cpu, NULL);
        if (!cn) {
            pr_warn("CPU device node missing for CPU %d\n", cpu);
            return;
        }

        if (!of_find_property(cn, "sched-energy-costs", NULL)) {
            pr_warn("CPU device node has no sched-energy-costs\n");
            return;
        }

        for_each_possible_sd_level(sd_level) {
            cp = of_parse_phandle(cn, "sched-energy-costs", sd_level);
            if (!cp)
                break;

            prop = of_find_property(cp, "busy-cost-data", NULL);
            if (!prop || !prop->value) {
                pr_warn("No busy-cost data, skipping sched_energy init\n");
                goto out;
            }

            sge = kcalloc(1, sizeof(struct sched_group_energy),
                      GFP_NOWAIT);
            if (!sge)
                goto out;

            nstates = (prop->length / sizeof(u32)) / 2;
            cap_states = kcalloc(nstates,
                         sizeof(struct capacity_state),
                         GFP_NOWAIT);
            if (!cap_states) {
                kfree(sge);
                goto out;
            }

            for (i = 0, val = prop->value; i < nstates; i++) {    //将读取的[freq,energy]数组存放起来
                cap_states[i].cap = SCHED_CAPACITY_SCALE;
                cap_states[i].frequency = be32_to_cpup(val++);
                cap_states[i].power = be32_to_cpup(val++);
            }

            sge->nr_cap_states = nstates;      //state为[freq,energy]组合个数,就是支持多少个状态:将所有数据flatten之后,再处以2
            sge->cap_states = cap_states;

            prop = of_find_property(cp, "idle-cost-data", NULL);
            if (!prop || !prop->value) {
                pr_warn("No idle-cost data, skipping sched_energy init\n");
                kfree(sge);
                kfree(cap_states);
                goto out;
            }

            nstates = (prop->length / sizeof(u32));
            idle_states = kcalloc(nstates,
                          sizeof(struct idle_state),
                          GFP_NOWAIT);
            if (!idle_states) {
                kfree(sge);
                kfree(cap_states);
                goto out;
            }

            for (i = 0, val = prop->value; i < nstates; i++)
                idle_states[i].power = be32_to_cpup(val++);    //将读取的idle cost data存放起来

            sge->nr_idle_states = nstates;        //idle state的个数,就是idle cost data的长度
            sge->idle_states = idle_states;

            sge_array[cpu][sd_level] = sge;      //将当前cpu获取的energy模型存放再sge_array[cpu][sd_level]中。其中cpu就是对应哪个cpu,sd_level则对应是哪个sched_domain,也就是是cpu level还是cluster level
        }
    }

Load Tracking

QTI EAS使用的负载计算是WALT,是基于时间窗口的load统计方法,具体参考之前文章:https://www.cnblogs.com/lingjiajun/p/12317090.html

其中会跟踪计算出2个比较关键的数据,就是task_util和cpu_util 

当执行wakeup task placement,scheduler就会使用task utilization和CPU utilization

可以理解为将load的情况转化为Utilization,并且将其标准化为1024的值。

task_util = demand *1024 / window_size

    = (delta / window_size) * (cur_freq / max_freq) * cpu_max_capacity

-----delta是task在一个window中运行的真实时间;window_size默认是20ms;

   cur_freq为cpu当前频率;max_freq为cpu最大频率;

Task utilization boosted = Task utilization + (1024-task_util) x boost_percent -----boost percent是使用schedtune boost时,所需要乘上的百分比

CPU utilization = 1024 x (累计的runnable均值 / window size)--------累计的runnable均值,个人理解就是rq上所有task util的总和

Task placement的主要概念:

EAS是Task placement 是EAS影响调度的主要模块。 其主要keypoint如下:

1、EAS依靠energy model来进行精确地进行选择CPU运行

2、使用energy model估算:把一个任务安排在一个CPU上,或者将任务从一个CPU迁移到另一个CPU上,所发生的能量变化

3、EAS会在不影响performance情况下(比如满足满足最低的latency),趋向于选择消耗能量最小的CPU,去运行当前的task

4、EAS仅发生在system没有overutilized的情况下

5、EAS的概念与QTI EAS的一样

6、一旦系统处于overutilized,QTI EAS仍然在wake up的path下进行energy aware。不会考虑系统overutilized的情形。

补充:

overutilization,一个cpu_util大于cpu capacity的95%(sched_capacity_margin_up[cpu]),那么就认为这个cpu处于overutilization。并且整个系统也被认为overutilizaion。

EAS核心调度算法

不同版本的EAS在不同版本下的主要task placement实现函数(针对CFS task):

Zone scheduler: select_best_cpu()
QTI EAS r1.2: energy_aware_wake_cpu()
QTI EAS r1.5: find_energy_efficienct_cpu()

task placement调用路径:

QTI EAS r1.5 (Kernel 4.14)

Task wake-up: try_to_wake_up() →select_task_rq_fair() →invokes find_energy_efficient_cpu()

Scheduler tick occurs: scheduler_tick() →check_for_migration() →invokes find_energy_efficient_cpu()

New task arrives: do_fork() →wake_up_new_task() →select_task_rq_fair() →invokes find_energy_efficient_cpu()

EAS的task placement代码流程,主要目标是找到一个合适的cpu来运行当前这个task p。

主要代码就是find_energy_efficient_cpu()这个函数里面,如下:

  1 /*
  2  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
  3  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
  4  * spare capacity in each performance domain and uses it as a potential
  5  * candidate to execute the task. Then, it uses the Energy Model to figure
  6  * out which of the CPU candidates is the most energy-efficient.
  7  *
  8  * The rationale for this heuristic is as follows. In a performance domain,
  9  * all the most energy efficient CPU candidates (according to the Energy
 10  * Model) are those for which we'll request a low frequency. When there are
 11  * several CPUs for which the frequency request will be the same, we don't
 12  * have enough data to break the tie between them, because the Energy Model
 13  * only includes active power costs. With this model, if we assume that
 14  * frequency requests follow utilization (e.g. using schedutil), the CPU with
 15  * the maximum spare capacity in a performance domain is guaranteed to be among
 16  * the best candidates of the performance domain.
 17  *
 18  * In practice, it could be preferable from an energy standpoint to pack
 19  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
 20  * but that could also hurt our chances to go cluster idle, and we have no
 21  * ways to tell with the current Energy Model if this is actually a good
 22  * idea or not. So, find_energy_efficient_cpu() basically favors
 23  * cluster-packing, and spreading inside a cluster. That should at least be
 24  * a good thing for latency, and this is consistent with the idea that most
 25  * of the energy savings of EAS come from the asymmetry of the system, and
 26  * not so much from breaking the tie between identical CPUs. That's also the
 27  * reason why EAS is enabled in the topology code only for systems where
 28  * SD_ASYM_CPUCAPACITY is set.
 29  *
 30  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
 31  * they don't have any useful utilization data yet and it's not possible to
 32  * forecast their impact on energy consumption. Consequently, they will be
 33  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
 34  * to be energy-inefficient in some use-cases. The alternative would be to
 35  * bias new tasks towards specific types of CPUs first, or to try to infer
 36  * their util_avg from the parent task, but those heuristics could hurt
 37  * other use-cases too. So, until someone finds a better way to solve this,
 38  * let's keep things simple by re-using the existing slow path.
 39  */
 40
 41 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu,
 42                      int sync, int sibling_count_hint)
 43 {
 44     unsigned long prev_energy = ULONG_MAX, best_energy = ULONG_MAX;
 45     struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
 46     int weight, cpu = smp_processor_id(), best_energy_cpu = prev_cpu;    //cpu:当前执行的cpu
 47     unsigned long cur_energy;
 48     struct perf_domain *pd;
 49     struct sched_domain *sd;
 50     cpumask_t *candidates;
 51     bool is_rtg;
 52     struct find_best_target_env fbt_env;
 53     bool need_idle = wake_to_idle(p);                //是否set flag PF_WAKE_UP_IDLE
 54     int placement_boost = task_boost_policy(p);        //获取task sched boost policy:none/on_big/on_all 与sched_boost、schedtune设置也有关
 55     u64 start_t = 0;
 56     int delta = 0;
 57     int task_boost = per_task_boost(p);            //仅网络有打开该boost,这里可以认为没有boost
 58     int boosted = (schedtune_task_boost(p) > 0) || (task_boost > 0);    //查看task的schedtune有没有打开boost
 59     int start_cpu = get_start_cpu(p);        //获取从哪个cpu core开始,尝试作为target cpu
 60
 61     if (start_cpu < 0)
 62         goto eas_not_ready;
 63
 64     is_rtg = task_in_related_thread_group(p);    //判断task是否在一个group内
 65
 66     fbt_env.fastpath = 0;
 67
 68     if (trace_sched_task_util_enabled())
 69         start_t = sched_clock();                //trace log
 70
 71     /* Pre-select a set of candidate CPUs. */
 72     candidates = this_cpu_ptr(&energy_cpus);
 73     cpumask_clear(candidates);
 74
 75     if (need_idle)
 76         sync = 0;
 77
 78     if (sysctl_sched_sync_hint_enable && sync &&
 79                 bias_to_this_cpu(p, cpu, start_cpu)) {        //满足3个调节:sync hint enable/flag:sync=1/bias to当前cpu
 80         best_energy_cpu = cpu;                                //当前执行的cpu
 81         fbt_env.fastpath = SYNC_WAKEUP;
 82         goto done;
 83     }
 84
 85     if (is_many_wakeup(sibling_count_hint) && prev_cpu != cpu &&    //sibling_count_hint代表有多少个thread在当前event中唤醒
 86                 bias_to_this_cpu(p, prev_cpu, start_cpu)) {
 87         best_energy_cpu = prev_cpu;                            //选择prev cpu
 88         fbt_env.fastpath = MANY_WAKEUP;
 89         goto done;
 90     }
 91
 92     rcu_read_lock();
 93     pd = rcu_dereference(rd->pd);
 94     if (!pd)
 95         goto fail;
 96
 97     /*
 98      * Energy-aware wake-up happens on the lowest sched_domain starting
 99      * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
100      */
101     sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
102     while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
103         sd = sd->parent;
104     if (!sd)
105         goto fail;
106
107     sync_entity_load_avg(&p->se);        //更新task所在sched_entity的PELT load
108     if (!task_util_est(p))
109         goto unlock;
110
111     if (sched_feat(FIND_BEST_TARGET)) {        //检查FIND_BEST_TARGET这个调度特性是否打开:目前是打开的
112         fbt_env.is_rtg = is_rtg;
113         fbt_env.placement_boost = placement_boost;
114         fbt_env.need_idle = need_idle;
115         fbt_env.start_cpu = start_cpu;
116         fbt_env.boosted = boosted;
117         fbt_env.strict_max = is_rtg &&
118             (task_boost == TASK_BOOST_STRICT_MAX);
119         fbt_env.skip_cpu = is_many_wakeup(sibling_count_hint) ?
120                    cpu : -1;
121
122         find_best_target(NULL, candidates, p, &fbt_env);            //(1)核心函数,最终是将找到的target_cpu和backup_cpu都存放进了candidates中
123     } else {
124         select_cpu_candidates(sd, candidates, pd, p, prev_cpu);
125     }
126
127     /* Bail out if no candidate was found. */
128     weight = cpumask_weight(candidates);    //判断如果没有找到target cpu和backup cpu时,直接goto unlock
129     if (!weight)
130         goto unlock;
131
132     /* If there is only one sensible candidate, select it now. */
133     cpu = cpumask_first(candidates);
134     if (weight == 1 && ((schedtune_prefer_idle(p) && idle_cpu(cpu)) ||      //如果只找到了1个cpu,task是prefer_idle并且这个cpu也是idle的;或者cpu就是prev_cpu
135                 (cpu == prev_cpu))) {
136         best_energy_cpu = cpu;                              //那么就选这个cpu为【best_energy_cpu】
137         goto unlock;
138     }
139
140 #ifdef CONFIG_SCHED_WALT
141     if (p->state == TASK_WAKING)      //如果是新唤醒的task,获取task_util
142         delta = task_util(p);
143 #endif
144     if (task_placement_boost_enabled(p) || need_idle || boosted ||      //满足一下条件之一,那么第一个candidate cpu就作为【best_energy_cpu】不再考虑计算energy
145         is_rtg || __cpu_overutilized(prev_cpu, delta) ||            //打开了sched_boost、need_idle(PF_WAKE_UP_IDLE)、开了schedtune boost、related_thread_group限制使用小核、prev_cpu+delta没有overutil、
146         !task_fits_max(p, prev_cpu) || cpu_isolated(prev_cpu)) {       //p放在prev_cpu上会misfit、prev_cpu处于isolated
147         best_energy_cpu = cpu;
148         goto unlock;
149     }
150
151     if (cpumask_test_cpu(prev_cpu, &p->cpus_allowed))              //根据prev_cpu是否在task p的cpuset范围内
152         prev_energy = best_energy = compute_energy(p, prev_cpu, pd);     //(2)在范围内,则计算p在prev_cpu上的energy
153     else
154         prev_energy = best_energy = ULONG_MAX;                  //不在范围内,energy就设为最大,说明prev_cpu不考虑作为best_energy_cpu了
155
156     /* Select the best candidate energy-wise. */          //通过比较energy,挑选出best_energy_cpu、best_energy
157     for_each_cpu(cpu, candidates) {
158         if (cpu == prev_cpu)      //过滤prev_cpu
159             continue;
160         cur_energy = compute_energy(p, cpu, pd);            //计算p迁移到candidate cpu上的energy
161         trace_sched_compute_energy(p, cpu, cur_energy, prev_energy,
162                        best_energy, best_energy_cpu);
163         if (cur_energy < best_energy) {
164             best_energy = cur_energy;
165             best_energy_cpu = cpu;
166         } else if (cur_energy == best_energy) {
167             if (select_cpu_same_energy(cpu, best_energy_cpu,    //当candidate cpu的energy与best_cpu一样的话,怎么选
168                         prev_cpu)) {
169                 best_energy = cur_energy;
170                 best_energy_cpu = cpu;
171             }
172         }
173     }
174 unlock:
175     rcu_read_unlock();
176
177     /*
178      * Pick the prev CPU, if best energy CPU can't saves at least 6% of
179      * the energy used by prev_cpu.
180      */
181     if ((prev_energy != ULONG_MAX) && (best_energy_cpu != prev_cpu)  &&  //找到了非prev_cpu的best_energy_cpu、且省电下来的energy要大于在prev_energy上的6%,那么best_energy_cpu则满足条件;否则仍然使用prev_cpu
182         ((prev_energy - best_energy) <= prev_energy >> 4))          //这里巧妙地使用了位移:右移1位代表÷2,所以prev_energy/2/2/2/2 = prev_energy*6%
183         best_energy_cpu = prev_cpu;
184
185 done:
186
187     trace_sched_task_util(p, cpumask_bits(candidates)[0], best_energy_cpu,
188             sync, need_idle, fbt_env.fastpath, placement_boost,
189             start_t, boosted, is_rtg, get_rtg_status(p), start_cpu);
190
191     return best_energy_cpu;
192
193 fail:
194     rcu_read_unlock();
195 eas_not_ready:
196     return -1;
197 }

 (1)find_best_target()

  1 static void find_best_target(struct sched_domain *sd, cpumask_t *cpus,
  2                     struct task_struct *p,
  3                     struct find_best_target_env *fbt_env)
  4 {
  5     unsigned long min_util = boosted_task_util(p);        //获取p的boosted_task_util
  6     unsigned long target_capacity = ULONG_MAX;
  7     unsigned long min_wake_util = ULONG_MAX;
  8     unsigned long target_max_spare_cap = 0;
  9     unsigned long best_active_util = ULONG_MAX;
 10     unsigned long best_active_cuml_util = ULONG_MAX;
 11     unsigned long best_idle_cuml_util = ULONG_MAX;
 12     bool prefer_idle = schedtune_prefer_idle(p);    //获取task prefer_idle配置
 13     bool boosted = fbt_env->boosted;
 14     /* Initialise with deepest possible cstate (INT_MAX) */
 15     int shallowest_idle_cstate = INT_MAX;
 16     struct sched_domain *start_sd;
 17     struct sched_group *sg;
 18     int best_active_cpu = -1;
 19     int best_idle_cpu = -1;
 20     int target_cpu = -1;
 21     int backup_cpu = -1;
 22     int i, start_cpu;
 23     long spare_wake_cap, most_spare_wake_cap = 0;
 24     int most_spare_cap_cpu = -1;
 25     int prev_cpu = task_cpu(p);
 26     bool next_group_higher_cap = false;
 27     int isolated_candidate = -1;
 28
 29     /*
 30      * In most cases, target_capacity tracks capacity_orig of the most
 31      * energy efficient CPU candidate, thus requiring to minimise
 32      * target_capacity. For these cases target_capacity is already
 33      * initialized to ULONG_MAX.
 34      * However, for prefer_idle and boosted tasks we look for a high
 35      * performance CPU, thus requiring to maximise target_capacity. In this
 36      * case we initialise target_capacity to 0.
 37      */
 38     if (prefer_idle && boosted)
 39         target_capacity = 0;
 40
 41     if (fbt_env->strict_max)
 42         most_spare_wake_cap = LONG_MIN;
 43
 44     /* Find start CPU based on boost value */
 45     start_cpu = fbt_env->start_cpu;
 46     /* Find SD for the start CPU */
 47     start_sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, start_cpu));    //找到start cpu所在的sched domain,sd_asym_cpucapacity表示是非对称cpu capacity级别,应该就是DIE level,所以domain是cpu0-7
 48     if (!start_sd)
 49         goto out;
 50
 51     /* fast path for prev_cpu */
 52     if (((capacity_orig_of(prev_cpu) == capacity_orig_of(start_cpu)) ||        //prev cpu和start cpu的当前max_policy_freq下的capacity相等
 53         asym_cap_siblings(prev_cpu, start_cpu)) &&
 54         !cpu_isolated(prev_cpu) && cpu_online(prev_cpu) &&
 55         idle_cpu(prev_cpu)) {
 56
 57         if (idle_get_state_idx(cpu_rq(prev_cpu)) <= 1) {    //prev cpu idle state的index <1,说明休眠不深
 58             target_cpu = prev_cpu;
 59
 60             fbt_env->fastpath = PREV_CPU_FASTPATH;
 61             goto target;
 62         }
 63     }
 64
 65     /* Scan CPUs in all SDs */
 66     sg = start_sd->groups;
 67     do {                            //do-while循环,针对start cpu的调度域中的所有调度组进行遍历,由于domain是cpu0-7,那么调度组就是2个大小cluster:cpu0-3,cpu4-7
 68         for_each_cpu_and(i, &p->cpus_allowed, sched_group_span(sg)) {    //寻找task允许的cpuset和调度组可用cpu范围内
 69             unsigned long capacity_curr = capacity_curr_of(i);        //当前freq的cpu_capacity
 70             unsigned long capacity_orig = capacity_orig_of(i);        //当前max_policy_freq的cpu_capacity, >=capacity_curr
 71             unsigned long wake_util, new_util, new_util_cuml;
 72             long spare_cap;
 73             int idle_idx = INT_MAX;
 74
 75             trace_sched_cpu_util(i);
 76
 77             if (!cpu_online(i) || cpu_isolated(i))        //cpu处于非online,或者isolate状态,则直接不考虑
 78                 continue;
 79
 80             if (isolated_candidate == -1)
 81                 isolated_candidate = i;
 82
 83             /*
 84              * This CPU is the target of an active migration that's
 85              * yet to complete. Avoid placing another task on it.
 86              * See check_for_migration()
 87              */
 88             if (is_reserved(i))        //已经有task要迁移到上面,但是还没有迁移完成。所以这样的cpu不考虑
 89                 continue;
 90
 91             if (sched_cpu_high_irqload(i))    //高irq load的cpu不考虑。irq load可以参考之前WALT文章:https://www.cnblogs.com/lingjiajun/p/12317090.html
 92                 continue;
 93
 94             if (fbt_env->skip_cpu == i)        //当前活动的cpu是否有很多event一起wakeup,如果有,那么也不考虑该cpu
 95                 continue;
 96
 97             /*
 98              * p's blocked utilization is still accounted for on prev_cpu
 99              * so prev_cpu will receive a negative bias due to the double
100              * accounting. However, the blocked utilization may be zero.
101              */
102             wake_util = cpu_util_without(i, p);      //计算没有除了p以外的cpu_util(p不在该cpu rq的情况下,实际就是当前cpu_util)
103             new_util = wake_util + task_util_est(p);    //计算cpu_util + p的task_util(p的task_util就是walt统计的demand_scaled)
104             spare_wake_cap = capacity_orig - wake_util;  //剩余的capacity = capacity_orig - p以外的cpu_util
105
106             if (spare_wake_cap > most_spare_wake_cap) {
107                 most_spare_wake_cap = spare_wake_cap;  //在循环中,找到有剩余capacity最多(最空闲)的cpu = i,并保存剩余的capacity
108                 most_spare_cap_cpu = i;
109             }
110
111             if (per_task_boost(cpu_rq(i)->curr) ==    //cpu【i】当前running_task的task_boost == TASK_BOOST_STRICT_MAX,那么不适合作为tager_cpu
112                     TASK_BOOST_STRICT_MAX)
113                 continue;
114             /*
115              * Cumulative demand may already be accounting for the
116              * task. If so, add just the boost-utilization to
117              * the cumulative demand of the cpu.
118              */
119             if (task_in_cum_window_demand(cpu_rq(i), p))      //计算新的cpu【i】的cpu_util_cum = cpu_util_cum + p的boosted_task_util
120                 new_util_cuml = cpu_util_cum(i, 0) +        //特别地,如果p已经在cpu【i】的rq中,或者p的部分demand被统计在了walt中。那么防止统计2次,所以要减去p的task_util(denamd_scaled)
121                         min_util - task_util(p);
122             else
123                 new_util_cuml = cpu_util_cum(i, 0) + min_util;
124
125             /*
126              * Ensure minimum capacity to grant the required boost.
127              * The target CPU can be already at a capacity level higher
128              * than the one required to boost the task.
129              */
130             new_util = max(min_util, new_util);          //取 p的booted_task_util、加入p之后的cpu_util,之间的较大值
131             if (new_util > capacity_orig)              //与capacity_orig比较,大于capacity_orig的情况下,不适合作为target_cpu
132                 continue;
133
134             /*
135              * Pre-compute the maximum possible capacity we expect
136              * to have available on this CPU once the task is
137              * enqueued here.
138              */
139             spare_cap = capacity_orig - new_util;        //预计算当p迁移到cpu【i】上后,剩余的可能最大capacity
140
141             if (idle_cpu(i))                     //判断当前cpu【i】是否处于idle,并获取idle index(idle的深度)
142                 idle_idx = idle_get_state_idx(cpu_rq(i));
143
144
145             /*
146              * Case A) Latency sensitive tasks
147              *
148              * Unconditionally favoring tasks that prefer idle CPU to
149              * improve latency.
150              *
151              * Looking for:
152              * - an idle CPU, whatever its idle_state is, since
153              *   the first CPUs we explore are more likely to be
154              *   reserved for latency sensitive tasks.
155              * - a non idle CPU where the task fits in its current
156              *   capacity and has the maximum spare capacity.
157              * - a non idle CPU with lower contention from other
158              *   tasks and running at the lowest possible OPP.
159              *
160              * The last two goals tries to favor a non idle CPU
161              * where the task can run as if it is "almost alone".
162              * A maximum spare capacity CPU is favoured since
163              * the task already fits into that CPU's capacity
164              * without waiting for an OPP chance.
165              *
166              * The following code path is the only one in the CPUs
167              * exploration loop which is always used by
168              * prefer_idle tasks. It exits the loop with wither a
169              * best_active_cpu or a target_cpu which should
170              * represent an optimal choice for latency sensitive
171              * tasks.
172              */
173             if (prefer_idle) {                        //对lantency有要求的task
174                 /*
175                  * Case A.1: IDLE CPU
176                  * Return the best IDLE CPU we find:
177                  * - for boosted tasks: the CPU with the highest
178                  * performance (i.e. biggest capacity_orig)
179                  * - for !boosted tasks: the most energy
180                  * efficient CPU (i.e. smallest capacity_orig)
181                  */
182                 if (idle_cpu(i)) {                    //如果cpu【i】是idle的
183                     if (boosted &&
184                         capacity_orig < target_capacity)      //对于boosted task,cpu需要选择最大capacity_orig,不满足要continue
185                         continue;
186                     if (!boosted &&
187                         capacity_orig > target_capacity)      //对于非boosted task,cpu选择最小capacity_orig,不满足要continue
188                         continue;
189                     /*
190                      * Minimise value of idle state: skip
191                      * deeper idle states and pick the
192                      * shallowest.
193                      */
194                     if (capacity_orig == target_capacity &&
195                         sysctl_sched_cstate_aware &&
196                         idle_idx >= shallowest_idle_cstate)    //包括下面的continue,都是为了挑选出处于idle最浅的cpu
197                         continue;
198
199                     target_capacity = capacity_orig;
200                     shallowest_idle_cstate = idle_idx;
201                     best_idle_cpu = i;                //选出【prefer_idle】best_idle_cpu
202                     continue;
203                 }
204                 if (best_idle_cpu != -1)              //过滤上面已经找到best_idle_cpu的情况,不需要走下面流程了
205                     continue;
206
207                 /*
208                  * Case A.2: Target ACTIVE CPU
209                  * Favor CPUs with max spare capacity.
210                  */
211                 if (capacity_curr > new_util &&
212                     spare_cap > target_max_spare_cap) {    //找到capacity_curr满足包含进程p的cpu_util,并且找到空闲capacity最多的那个cpu
213                     target_max_spare_cap = spare_cap;
214                     target_cpu = i;                //选出【prefer_idle】target_cpu
215                     continue;
216                 }
217                 if (target_cpu != -1)              //如果cpu条件不满足,则continue,继续找target_cpu
218                     continue;
219
220
221                 /*
222                  * Case A.3: Backup ACTIVE CPU
223                  * Favor CPUs with:
224                  * - lower utilization due to other tasks
225                  * - lower utilization with the task in
226                  */
227                 if (wake_util > min_wake_util)          //找出除了p以外的cpu_util最小的cpu
228                     continue;
229
230                 /*
231                  * If utilization is the same between CPUs,
232                  * break the ties with WALT's cumulative
233                  * demand
234                  */
235                 if (new_util == best_active_util &&
236                     new_util_cuml > best_active_cuml_util)  //如果包含p的cpu_util相等,那么就挑选cpu_util_cum + p的boosted_task_util最小的那个cpu
237                     continue;
238                 min_wake_util = wake_util;
239                 best_active_util = new_util;
240                 best_active_cuml_util = new_util_cuml;
241                 best_active_cpu = i;                //选出【prefer_idle】best_active_cpu
242                 continue;
243             }
244
245             /*
246              * Skip processing placement further if we are visiting
247              * cpus with lower capacity than start cpu
248              */
249             if (capacity_orig < capacity_orig_of(start_cpu))  //cpu【i】capacity_orig < 【start_cpu】capacity_orig的不考虑
250                 continue;
251
252             /*
253              * Case B) Non latency sensitive tasks on IDLE CPUs.
254              *
255              * Find an optimal backup IDLE CPU for non latency
256              * sensitive tasks.
257              *
258              * Looking for:
259              * - minimizing the capacity_orig,
260              *   i.e. preferring LITTLE CPUs
261              * - favoring shallowest idle states
262              *   i.e. avoid to wakeup deep-idle CPUs
263              *
264              * The following code path is used by non latency
265              * sensitive tasks if IDLE CPUs are available. If at
266              * least one of such CPUs are available it sets the
267              * best_idle_cpu to the most suitable idle CPU to be
268              * selected.
269              *
270              * If idle CPUs are available, favour these CPUs to
271              * improve performances by spreading tasks.
272              * Indeed, the energy_diff() computed by the caller67jkkk
273              * will take care to ensure the minimization of energy
274              * consumptions without affecting performance.
275              */                               //对latency要求不高的task,并要求idle cpu作为target的情况
276             if (idle_cpu(i)) {                      //判断cpu【i】是否idle
277                 /*
278                  * Prefer shallowest over deeper idle state cpu,
279                  * of same capacity cpus.
280                  */
281                 if (capacity_orig == target_capacity &&      //选出capacity相同情况下,idle最浅的cpu
282                     sysctl_sched_cstate_aware &&
283                     idle_idx > shallowest_idle_cstate)
284                     continue;
285
286                 if (shallowest_idle_cstate == idle_idx &&
287                     target_capacity == capacity_orig &&
288                     (best_idle_cpu == prev_cpu ||
289                     (i != prev_cpu &&
290                     new_util_cuml > best_idle_cuml_util)))    //best_idle_cpu非prev_cpu,并且挑选cpu_util_cum + p的boosted_task_util最小的
291                     continue;
292
293                 target_capacity = capacity_orig;
294                 shallowest_idle_cstate = idle_idx;
295                 best_idle_cuml_util = new_util_cuml;
296                 best_idle_cpu = i;                  //选出【normal-idle】best_idle_cpu
297                 continue;
298             }
299
300             /*
301              * Consider only idle CPUs for active migration.
302              */
303             if (p->state == TASK_RUNNING)              //task p正在运行说明是misfit task,只考虑idle cpu作为target,不进行下面流程
304                 continue;
305
306             /*
307              * Case C) Non latency sensitive tasks on ACTIVE CPUs.
308              *
309              * Pack tasks in the most energy efficient capacities.
310              *
311              * This task packing strategy prefers more energy
312              * efficient CPUs (i.e. pack on smaller maximum
313              * capacity CPUs) while also trying to spread tasks to
314              * run them all at the lower OPP.
315              *
316              * This assumes for example that it's more energy
317              * efficient to run two tasks on two CPUs at a lower
318              * OPP than packing both on a single CPU but running
319              * that CPU at an higher OPP.
320              *
321              * Thus, this case keep track of the CPU with the
322              * smallest maximum capacity and highest spare maximum
323              * capacity.
324              */                                  //对latency要求不高,并需要ACTIVE cpu作为target的情况
325
326             /* Favor CPUs with maximum spare capacity */
327             if (spare_cap < target_max_spare_cap)        //找到迁移p之后,剩余capacity最多的cpu
328                 continue;
329
330             target_max_spare_cap = spare_cap;
331             target_capacity = capacity_orig;
332             target_cpu = i;                      //找出【normal-ACTIVe】的target_cpu
333         }      //到此就是一个调度组(cluster)内cpu的循环查找
334
335         next_group_higher_cap = (capacity_orig_of(group_first_cpu(sg)) <
336             capacity_orig_of(group_first_cpu(sg->next)));      //尝试查找下一个capacity更大的big cluster
337
338         /*
339          * If we've found a cpu, but the boost is ON_ALL we continue
340          * visiting other clusters. If the boost is ON_BIG we visit
341          * next cluster if they are higher in capacity. If we are
342          * not in any kind of boost, we break.
343          *
344          * And always visit higher capacity group, if solo cpu group
345          * is not in idle.
346          */
347         if (!prefer_idle && !boosted &&                //上面找到cpu但是boost=ON_ALL,那么还要查找其他cluster
348             ((target_cpu != -1 && (sg->group_weight > 1 ||     //上面找到cpu但是boost=ON_BIG,那么还要在capacity更大的cluster中查找
349              !next_group_higher_cap)) ||                //上面找到了cpu,并且不在任何boost。那么break
350              best_idle_cpu != -1) &&                  //如果上面group中,没有cpu是idle,那么always在capacity更大的cluster中查找
351             (fbt_env->placement_boost == SCHED_BOOST_NONE ||
352             !is_full_throttle_boost() ||
353             (fbt_env->placement_boost == SCHED_BOOST_ON_BIG &&
354                 !next_group_higher_cap)))                
355             break;
356
357         /*
358          * if we are in prefer_idle and have found an idle cpu,
359          * break from searching more groups based on the stune.boost and
360          * group cpu capacity. For !prefer_idle && boosted case, don't
361          * iterate lower capacity CPUs unless the task can't be
362          * accommodated in the higher capacity CPUs.
363          */
364         if ((prefer_idle && best_idle_cpu != -1) ||            //如果设置了prefer_idle,并且找到了一个idle cpu;根据schedtune是否打开boost和是否有更大capacity的cluster进行判断是否break
365             (boosted && (best_idle_cpu != -1 || target_cpu != -1 ||   //没有prefer_idle,但是打开boost的情况,除非high capacity的cpu不能接受task,否则不用再遍历low capacity的cpu
366              (fbt_env->strict_max && most_spare_cap_cpu != -1)))) {
367             if (boosted) {                           
368                 if (!next_group_higher_cap)                 
369                     break;
370             } else {
371                 if (next_group_higher_cap)
372                     break;
373             }
374         }
375
376     } while (sg = sg->next, sg != start_sd->groups);
377
378     adjust_cpus_for_packing(p, &target_cpu, &best_idle_cpu,      //计算将task放在target_cpu时,在考虑20%的余量,和sched_load_boost之后,看capacity是否满足target_cpu当前freq的capacity
379                 shallowest_idle_cstate,                  //另外检查rtg,看是否不考虑idle cpu
380                 fbt_env, boosted);
381
382     /*
383      * For non latency sensitive tasks, cases B and C in the previous loop,
384      * we pick the best IDLE CPU only if we was not able to find a target
385      * ACTIVE CPU.                                    //latency要求不高的task选择cpu优先级:ACTIVE cpu > idle cpu;没有ACITVE,则选idle cpu
386      *
387      * Policies priorities:
388      *
389      * - prefer_idle tasks:                              //prefer_idle的task选择cpu优先级:idle cpu > ACTIVE cpu(包含task之后又更多spare capacity) > ACTIVE cpu(更小cpu_util+boosted_task_util)
390      *
391      *   a) IDLE CPU available: best_idle_cpu
392      *   b) ACTIVE CPU where task fits and has the bigger maximum spare
393      *      capacity (i.e. target_cpu)
394      *   c) ACTIVE CPU with less contention due to other tasks
395      *      (i.e. best_active_cpu)
396      *
397      * - NON prefer_idle tasks:                            //非prefer_idle的task选择cpu优先级:ACTIVE cpu > idle cpu
398      *
399      *   a) ACTIVE CPU: target_cpu
400      *   b) IDLE CPU: best_idle_cpu
401      */
402
403     if (prefer_idle && (best_idle_cpu != -1)) {    //prefer_idle的task,直接选择best_idle_cpu作为target
404         target_cpu = best_idle_cpu;
405         goto target;
406     }
407
408     if (target_cpu == -1)              //假如target没有找到,那么重新找target:
409         target_cpu = prefer_idle
410             ? best_active_cpu            //1、prefer_idle的task选择best_active_cpu;
411             : best_idle_cpu;            //2、而非prefer_idle的task选择best_idle_cpu
412     else
413         backup_cpu = prefer_idle          //假如找到了target,那么再选backup_cpu:
414         ? best_active_cpu              //1、prefer_idle的task选择 best_active_cpu
415         : best_idle_cpu;               //2、非prefer_idle的task选择 best_idle_cpu
416
417     if (target_cpu == -1 && most_spare_cap_cpu != -1 &&
418         /* ensure we use active cpu for active migration */        //active migration(misfit task迁移)情况只选择active cpu
419         !(p->state == TASK_RUNNING && !idle_cpu(most_spare_cap_cpu)))
420         target_cpu = most_spare_cap_cpu;
421
422     if (target_cpu == -1 && isolated_candidate != -1 &&  //假如没有找到target_cpu,prev_cpu又处于isolated,而task允许的所有cpu中有online并且unisolated的
423                     cpu_isolated(prev_cpu))         
424         target_cpu = isolated_candidate;            //那么就选择最后一个online并unisolated的cpu作为target
425
426     if (backup_cpu >= 0)
427         cpumask_set_cpu(backup_cpu, cpus);          //将backup_cpu存放进cpus中
428     if (target_cpu >= 0) {
429 target:
430         cpumask_set_cpu(target_cpu, cpus);          //将找出的target cpu存放进cpus中
431     }
432
433 out:
434     trace_sched_find_best_target(p, prefer_idle, min_util, start_cpu,
435                      best_idle_cpu, best_active_cpu,
436                      most_spare_cap_cpu,
437                      target_cpu, backup_cpu);
438 }

(2)计算energy

/*
 * compute_energy(): Estimates the energy that would be consumed if @p was
 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
 * landscape of the * CPUs after the task migration, and uses the Energy Model
 * to compute what would be the energy if we decided to actually migrate that
 * task.
 */
static long
compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
{
    long util, max_util, sum_util, energy = 0;
    int cpu;

    for (; pd; pd = pd->next) {
        max_util = sum_util = 0;
        /*
         * The capacity state of CPUs of the current rd can be driven by
         * CPUs of another rd if they belong to the same performance
         * domain. So, account for the utilization of these CPUs too
         * by masking pd with cpu_online_mask instead of the rd span.
         *
         * If an entire performance domain is outside of the current rd,
         * it will not appear in its pd list and will not be accounted
         * by compute_energy().
         */
        for_each_cpu_and(cpu, perf_domain_span(pd), cpu_online_mask) {    //在perf domain的cpu中找出online的
#ifdef CONFIG_SCHED_WALT
            util = cpu_util_next_walt(cpu, p, dst_cpu);    //计算迁移task p之后,每个cpu的util情况
#else
            util = cpu_util_next(cpu, p, dst_cpu);
            util += cpu_util_rt(cpu_rq(cpu));
            util = schedutil_energy_util(cpu, util);
#endif
            max_util = max(util, max_util);            //找到perf domain中cpu util最大的值(同perf domain,即cluster,最大的util决定了freq的设定)
            sum_util += util;                        //统计迁移之后,perf domain内的总util
        }

        energy += em_pd_energy(pd->em_pd, max_util, sum_util);    //计算perf domain的energy,并累计大小cluster的energy,就是整个系统energy
    }

    return energy;
}

获取perf domain内的energy,在其中有2个重要的结构体:

/**
 * em_cap_state - Capacity state of a performance domain
 * @frequency:    The CPU frequency in KHz, for consistency with CPUFreq
 * @power:    The power consumed by 1 CPU at this level, in milli-watts
 * @cost:    The cost coefficient associated with this level, used during
 *        energy calculation. Equal to: power * max_frequency / frequency
 */
struct em_cap_state {
    unsigned long frequency;
    unsigned long power;
    unsigned long cost;
};

/**
 * em_perf_domain - Performance domain
 * @table:        List of capacity states, in ascending order
 * @nr_cap_states:    Number of capacity states
 * @cpus:        Cpumask covering the CPUs of the domain
 *
 * A "performance domain" represents a group of CPUs whose performance is
 * scaled together. All CPUs of a performance domain must have the same
 * micro-architecture. Performance domains often have a 1-to-1 mapping with
 * CPUFreq policies.
 */
struct em_perf_domain {
    struct em_cap_state *table;
    int nr_cap_states;
    unsigned long cpus[0];
};

em_pd_energy函数可以得到perf domain的energy。

/**
 * em_pd_energy() - Estimates the energy consumed by the CPUs of a perf. domain
 * @pd        : performance domain for which energy has to be estimated
 * @max_util    : highest utilization among CPUs of the domain
 * @sum_util    : sum of the utilization of all CPUs in the domain
 *
 * Return: the sum of the energy consumed by the CPUs of the domain assuming
 * a capacity state satisfying the max utilization of the domain.
 */
static inline unsigned long em_pd_energy(struct em_perf_domain *pd,
                unsigned long max_util, unsigned long sum_util)
{
    unsigned long freq, scale_cpu;
    struct em_cap_state *cs;
    int i, cpu;

    if (!sum_util)
        return 0;

    /*
     * In order to predict the capacity state, map the utilization of the
     * most utilized CPU of the performance domain to a requested frequency,
     * like schedutil.
     */
    cpu = cpumask_first(to_cpumask(pd->cpus));
    scale_cpu = arch_scale_cpu_capacity(NULL, cpu);            //获取cpu的max_capacity
    cs = &pd->table[pd->nr_cap_states - 1];                    //获取capacity state,是为了获取最大频点(因为cs的table是升序排列的,所以最后一个配置就是最大的频点)
    freq = map_util_freq(max_util, cs->frequency, scale_cpu);    //利用上面获取的最大频点、max_capacity,根据当前的cpu util映射到当前的cpu freq

    /*
     * Find the lowest capacity state of the Energy Model above the
     * requested frequency.
     */
    for (i = 0; i < pd->nr_cap_states; i++) {    //通过循环找到能满足当前cpu freq的最小的频点,及其对应的capacity state
        cs = &pd->table[i];                        //同样因为cs的table是升序排列的,所以递增找到第一个满足的,就是满足条件的最小频点
        if (cs->frequency >= freq)
            break;
    }

    /*
     * The capacity of a CPU in the domain at that capacity state (cs)
     * can be computed as:
     *
     *             cs->freq * scale_cpu
     *   cs->cap = --------------------                          (1)
     *                 cpu_max_freq
     *
     * So, ignoring the costs of idle states (which are not available in
     * the EM), the energy consumed by this CPU at that capacity state is
     * estimated as:
     *
     *             cs->power * cpu_util
     *   cpu_nrg = --------------------                          (2)
     *                   cs->cap
     *
     * since 'cpu_util / cs->cap' represents its percentage of busy time.
     *
     *   NOTE: Although the result of this computation actually is in
     *         units of power, it can be manipulated as an energy value
     *         over a scheduling period, since it is assumed to be
     *         constant during that interval.
     *
     * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
     * of two terms:
     *
     *             cs->power * cpu_max_freq   cpu_util
     *   cpu_nrg = ------------------------ * ---------          (3)
     *                    cs->freq            scale_cpu
     *
     * The first term is static, and is stored in the em_cap_state struct
     * as 'cs->cost'.
     *
     * Since all CPUs of the domain have the same micro-architecture, they
     * share the same 'cs->cost', and the same CPU capacity. Hence, the
     * total energy of the domain (which is the simple sum of the energy of
     * all of its CPUs) can be factorized as:
     *
     *            cs->cost * \Sum cpu_util
     *   pd_nrg = ------------------------                       (4)
     *                  scale_cpu
     */
    return cs->cost * sum_util / scale_cpu;        //通过上面的注释以及公式,推导出energy计算公式,并计算出perf doamin的总energy
}

总结

1、find_best_target()函数主要是根据当前情况,找到task迁移的candidate cpu(target_cpu、backup cpu、prev_cpu)

具体逻辑:

prefer_idle:

best_idle_cpu:必须选择idle状态的cpu
---【task打开boost,选大核cpu】 && 【idle state最浅】
---【task没有打开boost,选小核cpu】 && 【idle state最浅】

target_cpu:必选选择ACTIVE状态的cpu
---【当前freq的cpu_capacity > 迁移task后的cpu_util】 && 【迁移task之后,剩余capacity最多的cpu】

best_active_cpu:必选选择ACTIVE状态的cpu
---【当前cpu_util更小的cpu】 && 【迁移task之后的cpu_util相等的话,选择cpu_util_cum + boosted_task_util】

normal:

该cpu的capacity_orig > start_cpu的capacity_orig(只会往更大的cluster中寻找)

best_idle_cpu:必须选择idle状态的cpu
---【capacity相同情况下,idle最浅的cpu】 && 【选择cpu_util_cum + boosted_task_util中最小的】 && 【不能是prev_cpu】

非misfit task迁移的情况下,还要选出target_cpu
target_cpu:必选选择ACTIVE状态的cpu
---【迁移task之后,剩余capacity最多的cpu】】

2、在find_energy_efficient_cpu()后半段,计算task迁移到每个candidate cpu后的系统总energy。计算出的最小energy假如比prev_cpu的总energy少6%以上,那么这个cpu就是best_energy_cpu。

后续:在energy model与energy计算,目前还未弄清楚如何联系起来,后续需要找到如何联系。

06-04 17:46