看到其他人都是用费用流写的,我只能表示:动什么脑子?暴力就完事了!
嗯,这个题应该是一个相当显然的上下界最小费用可行流模型,所以跑就完事了。
\(s -> inn (i)\) \(f = INF\) \(w = buy\) 新买
\(out (i) -> inn (i + fast)\) \(f = INF\) \(w = fastw\) 快洗
\(out(i) ->inn(i + slow)\) \(f = INF\) \(w = sloww\) 慢洗
\(out(i) -> T\) 不洗
\(inn(i)->out(i)\) \(f = [use[i],use[i]]\) \(w=0\) 不洗
还有一个小小的坑了我一下。
\(inn (i) -> inn (i + 1)\) \(f=INF\) \(w=0\) 洗完不用留着
就是这样,然后套路最小费用可行流即可。
#include <bits/stdc++.h>
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N 4010
#define M 4000010
using namespace std;
struct Graph {
int cnt, head[N];
struct edge {
int nxt, to, f, w;
}e[M];
void add_edge (int from, int to, int flw, int val) {
e[++cnt].nxt = head[from];
e[cnt].to = to;
e[cnt].f = flw;
e[cnt].w = val;
head[from] = cnt;
}
Graph () {
cnt = -1;
memset (head, -1, sizeof (head));
}
}G1;
namespace _EK {
int vis[N], dis[N], flow[N];
int pre_edge[N], pre_node[N];
queue <int> q;
#define fpop(x) x.front();x.pop()
bool spfa (int s, int t, Graph &G) {
memset (vis, 0, sizeof (vis));
memset (dis, 0x3f, sizeof (dis));
memset (flow, 0x3f, sizeof (flow));
vis[s] = true, dis[s] = 0; q.push (s);
while (!q.empty ()) {
int u = fpop (q);
for (int i = G.head[u]; ~i; i = G.e[i].nxt) {
int v = G.e[i].to;
if (dis[v] > dis[u] + G.e[i].w && G.e[i].f) {
dis[v] = dis[u] + G.e[i].w;
flow[v] = min (flow[u], G.e[i].f);
pre_edge[v] = i;
pre_node[v] = u;
if (!vis[v]) {
vis[v] = true;
q.push (v);
}
}
}
vis[u] = false;
}
return dis[t] != INF;
}
}
int EK (int s, int t, Graph &G) {
int max_flow = 0, min_cost = 0;
while (_EK :: spfa (s, t, G)) {
max_flow += _EK :: flow[t];
min_cost += _EK :: flow[t] * _EK :: dis[t];
int u = t;
while (u != s) {
G.e[_EK :: pre_edge[u] ^ 0].f -= _EK :: flow[t];
G.e[_EK :: pre_edge[u] ^ 1].f += _EK :: flow[t];
u = _EK :: pre_node[u];
}
}
return min_cost;
}
void add_len (int u, int v, int f, int w) {
G1.add_edge (u, v, f, +w);
G1.add_edge (v, u, 0, -w);
}
int n, bw, qt, st, qw, sw, use[N], flow[N];
int inn (int x) {return n * 0 + x;}
int out (int x) {return n * 1 + x;}
signed main () {
freopen ("data.in", "r", stdin);
cin >> n;
int s = n * 2 + 1, t = n * 2 + 2;
int ss = n * 2 + 3, tt = n * 2 + 4;
for (int i = 1; i <= n; ++i) cin >> use[i];
cin >> bw >> qt >> qw >> st >> sw;
for (int i = 1; i <= n; ++i) {
add_len (s, inn (i), INF, bw);
add_len (out (i), t, INF, 00);
if (i + qt <= n) add_len (out (i), inn (i + qt), INF, qw);
if (i + st <= n) add_len (out (i), inn (i + st), INF, sw);
flow[out (i)] += use[i];
flow[inn (i)] -= use[i];
}
for (int i = 1; i < n; ++i) {
add_len (inn (i), inn (i + 1), INF, 0);
}
for (int i = inn (1); i <= out (n); ++i) {
if (flow[i] > 0) add_len (ss, i, +flow[i], 0);
if (flow[i] < 0) add_len (i, tt, -flow[i], 0);
}
add_len (t, s, INF, 0);
cout << EK (ss, tt, G1) << endl;
}