首先,让我们退一步看看在写一个for循环背后的直觉是什么: 1.遍历一个序列提取出一些信息 2.从当前的序列中生成另外的序列 3.写for循环已经是我的第二天性了,因为我是一个程序员 幸运的是,Python里面已经有很棒的工具帮你达到这些目标!你需要做的只是转变思想,用不同的角度看问题。 不到处写for循环你将会获得什么 1.更少的代码行数 2.更好的代码阅读性 3.只将缩进用于管理代码文本 Let’s see the code skeleton below: 看看下面这段代码的构架: Python #
with ...:
for ...:
if ...:
try:
except:
else:
1
2
3
4
5
6
7
#
with ...:
for ...:
if ...:
try:
except:
else:
这个例子使用了多层嵌套的代码,这是非常难以阅读的。我在这段代码中发现它无差别使用缩进把管理逻辑(with, try-except)和业务逻辑(for, if)混在一起。如果你遵守只对管理逻辑使用缩进的规范,那么核心业务逻辑应该立刻脱离出来。 “扁平结构比嵌套结构更好” – 《Python之禅》
为了避免for循环,你可以使用这些工具 1. 列表解析/生成器表达式 看一个简单的例子,这个例子主要是根据一个已经存在的序列编译一个新序列: Python result = []
for item in item_list:
new_item = do_something_with(item)
result.append(item)
1
2
3
4
result = []
for item in item_list:
new_item = do_something_with(item)
result.append(item)
如果你喜欢MapReduce,那你可以使用map,或者Python的列表解析: Python result = [do_something_with(item) for item in item_list]
1
result = [do_something_with(item) for item in item_list]
同样的,如果你只是想要获取一个迭代器,你可以使用语法几乎相通的生成器表达式。(你怎么能不爱上Python的一致性?) Python result = (do_something_with(item) for item in item_list)
1
result = (do_something_with(item) for item in item_list)
2. 函数 站在更高阶、更函数化的变成方式考虑一下,如果你想映射一个序列到另一个序列,直接调用map函数。(也可用列表解析来替代。) Python doubled_list = map(lambda x: x * 2, old_list)
1
doubled_list = map(lambda x: x * 2, old_list)
如果你想使一个序列减少到一个元素,使用reduce Python from functools import reduce
summation = reduce(lambda x, y: x + y, numbers)
1
2
from functools import reduce
summation = reduce(lambda x, y: x + y, numbers)
另外,Python中大量的内嵌功能可/会(我不知道这是好事还是坏事,你选一个,不加这个句子有点难懂)消耗迭代器: Python >>> a = list(range(10))
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> all(a)
False
>>> any(a)
True
>>> max(a)
9
>>> min(a)
0
>>> list(filter(bool, a))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> set(a)
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> dict(zip(a,a))
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>> sorted(a, reverse=True)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> str(a)
'[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'
>>> sum(a)
45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
>>> a = list(range(10))
>>> a
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> all(a)
False
>>> any(a)
True
>>> max(a)
9
>>> min(a)
0
>>> list(filter(bool, a))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> set(a)
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
>>> dict(zip(a,a))
{0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9}
>>> sorted(a, reverse=True)
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> str(a)
'[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]'
>>> sum(a)
45
3. 抽取函数或者表达式 上面的两种方法很好地处理了较为简单的逻辑,那更复杂的逻辑怎么办呢?作为一个程序员,我们会把困难的事情抽象成函数,这种方式也可以用在这里。如果你写下了这种代码: Python results = []
for item in item_list:
# setups
# condition
# processing
# calculation
results.append(result)
1
2
3
4
5
6
7
results = []
for item in item_list:
# setups
# condition
# processing
# calculation
results.append(result)
显然你赋予了一段代码太多的责任。为了改进,我建议你这样做: Python def process_item(item):
# setups
# condition
# processing
# calculation
return result results = [process_item(item) for item in item_list]
1
2
3
4
5
6
7
8
def process_item(item):
# setups
# condition
# processing
# calculation
return result results = [process_item(item) for item in item_list]
嵌套的for循环怎么样? Python results = []
for i in range(10):
for j in range(i):
results.append((i, j))
1
2
3
4
results = []
for i in range(10):
for j in range(i):
results.append((i, j))
列表解析可以帮助你: Python results = [(i, j)
for i in range(10)
for j in range(i)]
1
2
3
results = [(i, j)
for i in range(10)
for j in range(i)]
如果你要保存很多的内部状态怎么办呢? Python # finding the max prior to the current item
a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
results = []
current_max = 0
for i in a:
current_max = max(i, current_max)
results.append(current_max) # results = [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
1
2
3
4
5
6
7
8
9
# finding the max prior to the current item
a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
results = []
current_max = 0
for i in a:
current_max = max(i, current_max)
results.append(current_max) # results = [3, 4, 6, 6, 6, 9, 9, 9, 9, 9]
让我们提取一个表达式来实现这些: Python def max_generator(numbers):
current_max = 0
for i in numbers:
current_max = max(i, current_max)
yield current_max a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
results = list(max_generator(a))
1
2
3
4
5
6
7
8
def max_generator(numbers):
current_max = 0
for i in numbers:
current_max = max(i, current_max)
yield current_max a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
results = list(max_generator(a))
“等等,你刚刚在那个函数的表达式中使用了一个for循环,这是欺骗!”
好吧,自作聪明的家伙,试试下面的这个。 4. 你自己不要写for循环,itertools会为你代劳 这个模块真是妙。我相信这个模块能覆盖80%你想写下for循环的时候。例如,上一个例子可以这样改写: Python from itertools import accumulate
a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
resutls = list(accumulate(a, max))
1
2
3
from itertools import accumulate
a = [3, 4, 6, 2, 1, 9, 0, 7, 5, 8]
resutls = list(accumulate(a, max))
另外,如果你在迭代组合的序列,还有product(),permutations(),combinations()可以用。 结论 1.大多数情况下是不需要写for循环的。 2.应该避免使用for循环,这样会使得代码有更好的阅读性。 行动
首先,让我们退一步看看在写一个for循环背后的直觉是什么:
1.遍历一个序列提取出一些信息
2.从当前的序列中生成另外的序列
3.写for循环已经是我的第二天性了,因为我是一个程序员
幸运的是,Python里面已经有很棒的工具帮你达到这些目标!你需要做的只是转变思想,用不同的角度看问题。
不到处写for循环你将会获得什么
1.更少的代码行数
2.更好的代码阅读性
3.只将缩进用于管理代码文本
Let’s see the code skeleton below:
看看下面这段代码的构架:
Python
1 2 3 4 5 6 7 | # 1 with...: for...: if...: try: except: else: |
这个例子使用了多层嵌套的代码,这是非常难以阅读的。我在这段代码中发现它无差别使用缩进把管理逻辑(with, try-except)和业务逻辑(for, if)混在一起。如果你遵守只对管理逻辑使用缩进的规范,那么核心业务逻辑应该立刻脱离出来。
为了避免for循环,你可以使用这些工具
1. 列表解析/生成器表达式
看一个简单的例子,这个例子主要是根据一个已经存在的序列编译一个新序列:
Python
1 2 3 4 | result=[] foritem initem_list: new_item=do_something_with(item) result.append(item) |
如果你喜欢MapReduce,那你可以使用map,或者Python的列表解析:
Python
1 | result=[do_something_with(item)foritem initem_list] |
同样的,如果你只是想要获取一个迭代器,你可以使用语法几乎相通的生成器表达式。(你怎么能不爱上Python的一致性?)
Python
1 | result=(do_something_with(item)foritem initem_list) |
2. 函数
站在更高阶、更函数化的变成方式考虑一下,如果你想映射一个序列到另一个序列,直接调用map函数。(也可用列表解析来替代。)
Python
1 | doubled_list=map(lambdax:x*2,old_list) |
如果你想使一个序列减少到一个元素,使用reduce
Python
1 2 | fromfunctoolsimportreduce summation=reduce(lambdax,y:x+y,numbers) |
另外,Python中大量的内嵌功能可/会(我不知道这是好事还是坏事,你选一个,不加这个句子有点难懂)消耗迭代器:
Python
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | >>>a=list(range(10)) >>>a [0,1,2,3,4,5,6,7,8,9] >>>all(a) False >>>any(a) True >>>max(a) 9 >>>min(a) 0 >>>list(filter(bool,a)) [1,2,3,4,5,6,7,8,9] >>>set(a) {0,1,2,3,4,5,6,7,8,9} >>>dict(zip(a,a)) {0:0,1:1,2:2,3:3,4:4,5:5,6:6,7:7,8:8,9:9} >>>sorted(a,reverse=True) [9,8,7,6,5,4,3,2,1,0] >>>str(a) '[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]' >>>sum(a) 45 |
3. 抽取函数或者表达式
上面的两种方法很好地处理了较为简单的逻辑,那更复杂的逻辑怎么办呢?作为一个程序员,我们会把困难的事情抽象成函数,这种方式也可以用在这里。如果你写下了这种代码:
Python
1 2 3 4 5 6 7 | results=[] foritem initem_list: # setups # condition # processing # calculation results.append(result) |
显然你赋予了一段代码太多的责任。为了改进,我建议你这样做:
Python
1 2 3 4 5 6 7 8 | defprocess_item(item): # setups # condition # processing # calculation returnresult results=[process_item(item)foritem initem_list] |
嵌套的for循环怎么样?
Python
1 2 3 4 | results=[] foriinrange(10): forjinrange(i): results.append((i,j)) |
列表解析可以帮助你:
Python
1 2 3 | results=[(i,j) foriinrange(10) forjinrange(i)] |
如果你要保存很多的内部状态怎么办呢?
Python
1 2 3 4 5 6 7 8 9 | # finding the max prior to the current item a=[3,4,6,2,1,9,0,7,5,8] results=[] current_max=0 foriina: current_max=max(i,current_max) results.append(current_max) # results = [3, 4, 6, 6, 6, 9, 9, 9, 9, 9] |
让我们提取一个表达式来实现这些:
Python
1 2 3 4 5 6 7 8 | defmax_generator(numbers): current_max=0 foriinnumbers: current_max=max(i,current_max) yieldcurrent_max a=[3,4,6,2,1,9,0,7,5,8] results=list(max_generator(a)) |
好吧,自作聪明的家伙,试试下面的这个。
4. 你自己不要写for循环,itertools会为你代劳
这个模块真是妙。我相信这个模块能覆盖80%你想写下for循环的时候。例如,上一个例子可以这样改写:
Python
1 2 3 | fromitertoolsimportaccumulate a=[3,4,6,2,1,9,0,7,5,8] resutls=list(accumulate(a,max)) |
另外,如果你在迭代组合的序列,还有product(),permutations(),combinations()可以用。
结论
1.大多数情况下是不需要写for循环的。
2.应该避免使用for循环,这样会使得代码有更好的阅读性。