有什么问题可以加作者微信讨论,cyx645016617 上千人的粉丝群已经成立,氛围超好。为大家提供一个遇到问题有可能得到答案的平台。
0 概述
- 论文名称:“Richer Convolutional Features for Edge Detection”
- 论文链接:https://openaccess.thecvf.com/content_cvpr_2017/papers/Liu_Richer_Convolutional_Features_CVPR_2017_paper.pdf
- 缩写:RCF
这一篇文论在我看来,是CVPR 2015年 HED网络(holistically-nested edge detection)的一个改进,RCF的论文中也基本上和HED网络处处对比。
在上一篇文章中,我们依稀记得HED模型有这样一个图:
其中有HED的五个side output的特征图,下图是RCF论文中的图:
我们从这两个图的区别中来认识RCF相比HED的改进,大家可以看一看图。
揭晓答案:
- HED是豹子的图片,但是RCF是两只小鸟的图片(手动狗头)
- HED中的是side output的输出的特征图,而RCF中是conv3_1,conv3_2,这意味着RCF似乎把每一个卷积之后的输出的特征图都作为了一个side output。
没错,HED选取了5个side output,每一个side output都是池化层之前的卷积层输出的特征图;而RCF则对每一次卷积的输出特征图都作为side output,换句话说 最终的side output中,同一尺寸的输出可能不止一个。
如果还没有理解,请看下面章节,模型结构。
1 模型结构
RCF的backbone是VGG模型:
从图中可以看到:
- 主干网络上分成state1到5,stage1有两个卷积层,stage2有两个卷积层,总共有13个卷积层,每一次卷积输出的图像,再额外接入一个1x1的卷积,来降低通道数,所以可以看到,图中有大量的21通道的卷积层。
- 同一个stage的21通道的特征图经过通道拼接,变成42通道或者是63通道的特征图,然后再经过一个1x1的卷积层,来把通道数降低成1,再进过sigmoid层,输出的结果就是一个RCF模型中的side output了
2 损失函数
这里的损失函数其实和HED来说类似:
首先整体来看,损失函数依然使用二值交叉熵
其中\(|Y^-|\) 表示 negative的像素值,\(|Y^+|\)表示positive的像素值。一般来说轮廓检测任务中,positive的样本应该是较少的,因此\(\alpha\)的值较小,因此损失函数中第一行,y=0也就是计算非轮廓部分的损失的时候,就会增加一个较小的权重,来避免类别不均衡的问题。
损失函数中有两个常数,一个是\(\lambda\),这个就是权重常数,默认为1.1;另外一个是\(\eta\)。论文中的描述为:
大意就是:一般对数据集进行标注,是有多个人来完成的。不同的人虽然有不同的意识,但是他们对于同一个图片的轮廓标注往往是具有一致性。RCF网络最后的输出,是由5个side output融合产生的,因此你这个RCF的输出也应该把大于\(\eta\)的考虑为positive,然后小于\(\eta\)的考虑为negative。 其实这一点我自己在复现的时候并没有考虑,我看网上的github和官方的代码中,都没有考虑这个,都是直接交叉熵。。。我这就也就多此一举的讲解一下论文中的这个\(\eta\)的含义
3 pytorch部分代码
对于这个RCF论文来说,关键就是一个模型的构建,另外一个就是损失函数的构建,这里放出这两部分的代码,来帮助大家更好的理解上面的内容。
3.1 模型部分
下面的代码在上采样部分的写法比较老旧,因为这个网上找来的pytorch版本估计比较老,当时还没有Conv2DTrans这样的函数封装,但是不妨碍大家通过代码来学习RCF。
class RCF(nn.Module):
def __init__(self):
super(RCF, self).__init__()
#lr 1 2 decay 1 0
self.conv1_1 = nn.Conv2d(3, 64, 3, padding=1)
self.conv1_2 = nn.Conv2d(64, 64, 3, padding=1)
self.conv2_1 = nn.Conv2d(64, 128, 3, padding=1)
self.conv2_2 = nn.Conv2d(128, 128, 3, padding=1)
self.conv3_1 = nn.Conv2d(128, 256, 3, padding=1)
self.conv3_2 = nn.Conv2d(256, 256, 3, padding=1)
self.conv3_3 = nn.Conv2d(256, 256, 3, padding=1)
self.conv4_1 = nn.Conv2d(256, 512, 3, padding=1)
self.conv4_2 = nn.Conv2d(512, 512, 3, padding=1)
self.conv4_3 = nn.Conv2d(512, 512, 3, padding=1)
self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3,
stride=1, padding=2, dilation=2)
self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3,
stride=1, padding=2, dilation=2)
self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3,
stride=1, padding=2, dilation=2)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(2, stride=2, ceil_mode=True)
self.maxpool4 = nn.MaxPool2d(2, stride=1, ceil_mode=True)
#lr 0.1 0.2 decay 1 0
self.conv1_1_down = nn.Conv2d(64, 21, 1, padding=0)
self.conv1_2_down = nn.Conv2d(64, 21, 1, padding=0)
self.conv2_1_down = nn.Conv2d(128, 21, 1, padding=0)
self.conv2_2_down = nn.Conv2d(128, 21, 1, padding=0)
self.conv3_1_down = nn.Conv2d(256, 21, 1, padding=0)
self.conv3_2_down = nn.Conv2d(256, 21, 1, padding=0)
self.conv3_3_down = nn.Conv2d(256, 21, 1, padding=0)
self.conv4_1_down = nn.Conv2d(512, 21, 1, padding=0)
self.conv4_2_down = nn.Conv2d(512, 21, 1, padding=0)
self.conv4_3_down = nn.Conv2d(512, 21, 1, padding=0)
self.conv5_1_down = nn.Conv2d(512, 21, 1, padding=0)
self.conv5_2_down = nn.Conv2d(512, 21, 1, padding=0)
self.conv5_3_down = nn.Conv2d(512, 21, 1, padding=0)
#lr 0.01 0.02 decay 1 0
self.score_dsn1 = nn.Conv2d(21, 1, 1)
self.score_dsn2 = nn.Conv2d(21, 1, 1)
self.score_dsn3 = nn.Conv2d(21, 1, 1)
self.score_dsn4 = nn.Conv2d(21, 1, 1)
self.score_dsn5 = nn.Conv2d(21, 1, 1)
#lr 0.001 0.002 decay 1 0
self.score_final = nn.Conv2d(5, 1, 1)
def forward(self, x):
# VGG
img_H, img_W = x.shape[2], x.shape[3]
conv1_1 = self.relu(self.conv1_1(x))
conv1_2 = self.relu(self.conv1_2(conv1_1))
pool1 = self.maxpool(conv1_2)
conv2_1 = self.relu(self.conv2_1(pool1))
conv2_2 = self.relu(self.conv2_2(conv2_1))
pool2 = self.maxpool(conv2_2)
conv3_1 = self.relu(self.conv3_1(pool2))
conv3_2 = self.relu(self.conv3_2(conv3_1))
conv3_3 = self.relu(self.conv3_3(conv3_2))
pool3 = self.maxpool(conv3_3)
conv4_1 = self.relu(self.conv4_1(pool3))
conv4_2 = self.relu(self.conv4_2(conv4_1))
conv4_3 = self.relu(self.conv4_3(conv4_2))
pool4 = self.maxpool4(conv4_3)
conv5_1 = self.relu(self.conv5_1(pool4))
conv5_2 = self.relu(self.conv5_2(conv5_1))
conv5_3 = self.relu(self.conv5_3(conv5_2))
conv1_1_down = self.conv1_1_down(conv1_1)
conv1_2_down = self.conv1_2_down(conv1_2)
conv2_1_down = self.conv2_1_down(conv2_1)
conv2_2_down = self.conv2_2_down(conv2_2)
conv3_1_down = self.conv3_1_down(conv3_1)
conv3_2_down = self.conv3_2_down(conv3_2)
conv3_3_down = self.conv3_3_down(conv3_3)
conv4_1_down = self.conv4_1_down(conv4_1)
conv4_2_down = self.conv4_2_down(conv4_2)
conv4_3_down = self.conv4_3_down(conv4_3)
conv5_1_down = self.conv5_1_down(conv5_1)
conv5_2_down = self.conv5_2_down(conv5_2)
conv5_3_down = self.conv5_3_down(conv5_3)
so1_out = self.score_dsn1(conv1_1_down + conv1_2_down)
so2_out = self.score_dsn2(conv2_1_down + conv2_2_down)
so3_out = self.score_dsn3(conv3_1_down + conv3_2_down + conv3_3_down)
so4_out = self.score_dsn4(conv4_1_down + conv4_2_down + conv4_3_down)
so5_out = self.score_dsn5(conv5_1_down + conv5_2_down + conv5_3_down)
## transpose and crop way
weight_deconv2 = make_bilinear_weights(4, 1).cuda()
weight_deconv3 = make_bilinear_weights(8, 1).cuda()
weight_deconv4 = make_bilinear_weights(16, 1).cuda()
weight_deconv5 = make_bilinear_weights(32, 1).cuda()
upsample2 = torch.nn.functional.conv_transpose2d(so2_out, weight_deconv2, stride=2)
upsample3 = torch.nn.functional.conv_transpose2d(so3_out, weight_deconv3, stride=4)
upsample4 = torch.nn.functional.conv_transpose2d(so4_out, weight_deconv4, stride=8)
upsample5 = torch.nn.functional.conv_transpose2d(so5_out, weight_deconv5, stride=8)
### center crop
so1 = crop(so1_out, img_H, img_W)
so2 = crop(upsample2, img_H, img_W)
so3 = crop(upsample3, img_H, img_W)
so4 = crop(upsample4, img_H, img_W)
so5 = crop(upsample5, img_H, img_W)
fusecat = torch.cat((so1, so2, so3, so4, so5), dim=1)
fuse = self.score_final(fusecat)
results = [so1, so2, so3, so4, so5, fuse]
results = [torch.sigmoid(r) for r in results]
return results
3.2 损失函数部分
def cross_entropy_loss_RCF(prediction, label):
label = label.long()
mask = label.float()
num_positive = torch.sum((mask==1).float()).float()
num_negative = torch.sum((mask==0).float()).float()
mask[mask == 1] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask == 0] = 1.1 * num_positive / (num_positive + num_negative)
mask[mask == 2] = 0
cost = torch.nn.functional.binary_cross_entropy(
prediction.float(),label.float(), weight=mask, reduce=False)
return torch.sum(cost)
参考文章: