%RF:RF实现根据乳腺肿瘤特征向量高精度(better)预测肿瘤的是恶性还是良性

load data.mat

a = randperm(569);
Train = data(a(1:500),:);
Test = data(a(501:end),:); P_train = Train(:,3:end);
T_train = Train(:,2); P_test = Test(:,3:end);
T_test = Test(:,2); model = classRF_train(P_train,T_train); [T_sim,votes] = classRF_predict(P_test,model); count_B = length(find(T_train == 1));
count_M = length(find(T_train == 2));
total_B = length(find(data(:,2) == 1));
total_M = length(find(data(:,2) == 2));
number_B = length(find(T_test == 1));
number_M = length(find(T_test == 2));
number_B_sim = length(find(T_sim == 1 & T_test == 1));
number_M_sim = length(find(T_sim == 2 & T_test == 2));
disp(['病例总数:' num2str(569)...
' 良性:' num2str(total_B)...
' 恶性:' num2str(total_M)]);
disp(['训练集病例总数:' num2str(500)...
' 良性:' num2str(count_B)...
' 恶性:' num2str(count_M)]);
disp(['测试集病例总数:' num2str(69)...
' 良性:' num2str(number_B)...
' 恶性:' num2str(number_M)]);
disp(['良性乳腺肿瘤确诊:' num2str(number_B_sim)...
' 误诊:' num2str(number_B - number_B_sim)...
' 确诊率p1=' num2str(number_B_sim/number_B*100) '%']);
disp(['恶性乳腺肿瘤确诊:' num2str(number_M_sim)...
' 误诊:' num2str(number_M - number_M_sim)...
' 确诊率p2=' num2str(number_M_sim/number_M*100) '%']); figure index = find(T_sim ~= T_test);
plot(votes(index,1),votes(index,2),'r*')
hold on index = find(T_sim == T_test);
plot(votes(index,1),votes(index,2),'bo')
hold on legend('红色*是错误分类样本','蓝色空心圆是正确分类样本') plot(0:500,500:-1:0,'r-.')
hold on plot(0:500,0:500,'r-.')
hold on line([100 400 400 100 100],[100 100 400 400 100]) xlabel('输出为类别1的决策树棵数')
ylabel('输出为类别2的决策树棵数')
title('随机森林分类器性能分析—Jason niu') Accuracy = zeros(1,20);
for i = 50:50:1000
i
accuracy = zeros(1,100);
for k = 1:100
model = classRF_train(P_train,T_train,i);
T_sim = classRF_predict(P_test,model);
accuracy(k) = length(find(T_sim == T_test)) / length(T_test);
end
Accuracy(i/50) = mean(accuracy);
end figure
plot(50:50:1000,Accuracy)
xlabel('随机森林中决策树棵数')
ylabel('分类正确率')
title('随机森林中决策树棵数对性能的影响—Jason niu')

  

04-30 23:13