因为他要让我们求出每种状态出现次数的平方和,这样模拟两人取球的时候,设第一个人取球的方案为A,第二个人取球的方案为B,
这样对于每一个A,都有C(n + m , n)种B的方案与之对应,所以这样求出来正好是每种状态出现次数的平方和
所以方案数的平方和转化为选两次结果一样的方案数
我们用f[i][j][k][l]表示两个人同时取出了i+j个球,第一个人第1行取了i个球,第二行取了j个球,第二个人第1行取了k个球,第二行取了l个球
省掉一维,再用滚动数组
/*
f[i][j][k]表示第1种方案第一行选了i个,第二行选了j个
第二种方案第一行选了k个,第二行选了i+j-k个
*/
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
const int M = 505 ;
const int mod = 1024523 ;
using namespace std ;
inline int read() {
char c = getchar() ; int x = 0 , w = 1 ;
while(c>'9'||c<'0') { if(c=='-') w = -1 ; c = getchar() ; }
while(c>='0'&&c<='9') { x = x*10+c-'0' ; c = getchar() ; }
return x*w ;
}
int n , m ;
int f[2][M][M] , cur ;
char up[M] , dw[M] ;
int main() {
n = read() ; m = read() ;
scanf("%s",up + 1) ; scanf("%s",dw + 1) ;
f[0][0][0] = 1 ;
for(int i = 0 , l ; i <= n ; i ++ , cur ^= 1)
for(int j = 0 ; j <= m ; j ++)
for(int k = 0 ; k <= n ; k ++) {
if(f[cur][j][k] == 0) continue ;
l = i + j - k ;
if(up[i + 1] == up[k + 1])
f[cur ^ 1][j][k + 1] = (f[cur ^ 1][j][k + 1] + f[cur][j][k])%mod ;
if(up[i + 1] == dw[l + 1])
f[cur ^ 1][j][k] = (f[cur ^ 1][j][k] + f[cur][j][k])%mod ;
if(dw[j + 1] == up[k + 1])
f[cur][j + 1][k + 1] = (f[cur][j + 1][k + 1] + f[cur][j][k])%mod ;
if(dw[j + 1] == dw[l + 1])
f[cur][j + 1][k] = (f[cur][j + 1][k] + f[cur][j][k])%mod ;
f[cur][j][k] = 0 ;//卡常技巧,滚动数组时直接清0,避免memset
}
printf("%d\n",f[cur][m][n]) ;
return 0 ;
}