数学中的Sin和Cos是什么意思?

作者:admin 分类:生活随笔 发表于 2012年03月21日 16:48

问:数学中的Sin和Cos是什么意思?

答:sin, cos, tan 都是三角函数,分别叫做“正弦”、“余弦”、“正切”。

在初中阶段,这三个三角函数是这样解释的:

在一个直角三角形中,设∠C=90°,∠A, B, C 所对的边分别记作 a,b,c,那么对于锐角∠A,它的对边 a 和斜边 c 的比值 a/c 叫做∠A的正弦,记作 sinA;它的邻直角边 b 和斜边 c 的比值 b/c 叫做∠A的余弦,记作 cosA;它的对边 a 和邻直角边 b 的比值 a/b 叫做∠A的正切,记作 tanA。

在高中阶段,这三个三角函数是这样解释的:

在一个平面直角坐标系中,以原点为圆心,1 为半径画一个圆,这个圆交 x 轴于 A 点。以 O 为旋转中心,将 A 点逆时针旋转一定的角度α至 B 点,设此时 B 点的坐标是(x,y),那么此时 y 的值就叫做α的正弦,记作 sinα;此时 x 的值就叫做α的余弦,记作 cosα;y 与 x 的比值 y/x 就叫做α的正切,记作 tanα。

引:诱导公式

常用的诱导公式有以下几组:

1.sinα^2 +cosα^2=1

2.sinα/cosα=tanα

3.tanα=1/cotα

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

一般的最常用公式:

口诀:奇变偶不变,符号看象限

Sin(A+B)=SinA*CosB+SinB*CosA

Sin(A-B)=SinA*CosB-SinB*CosA

Cos(A+B)=CosA*CosB-SinA*SinB

Cos(A-B)=CosA*CosB+SinA*SinB

Tan(A+B)=(TanA+TanB)/(1-TanA*TanB)

Tan(A-B)=(TanA-TanB)/(1+TanA*TanB)

同角三角函数的关系(即同角八式)

平方关系:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

积的关系:

sinα=tanα*cosα

cosα=cotα*sinα

tanα=sinα*secα

cotα=cosα*cscα

secα=tanα*cscα

cscα=secα*cotα

倒数关系:

tanα*cotα=1

sinα*cscα=1

cosα*secα=1

商数关系:

sina/cosa=tana

cosa/sina=cota

直角三角形ABC中,角A的

正弦值就等于角A的对边比斜边: sina=y/r

余弦值等于角A的邻边比斜边: cosa=x/r

正切值等于对边比邻边: tana=y/x

三角函数恒等变形公式

两角和与差的三角函数

cos(α+β)=cosα*cosβ-sinα*sinβ

cos(α-β)=cosα*cosβ+sinα*sinβ

sin(α±β)=sinα*cosβ±cosα*sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα*tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα*tanβ)

辅助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

倍角公式

sin(2α)=2sinα*cosα=2/(tanα+cotα)

cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan(2α)=2tanα/[1-tan^2(α)]

三倍角公式

sin(3α)=3sinα-4sin^3(α)

cos(3α)=4cos^3(α)-3cosα

半角公式

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=vercos(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

积化和差公式

sinα*cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα*sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα*cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα*sinβ=-(1/2)[cos(α+β)-cos(α-β)]

和差化积公式

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

其他

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

-----------------------原文链接  http://www.ruyhouse.com/Article/42

05-11 11:30