题目背景
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,现在给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。
题目描述
规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
输入输出格式
输入格式:
第一行:三个整数n,m,p,(n<=5000,m<=5000,p<=5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。
以下m行:每行两个数Mi,Mj,1<=Mi,Mj<=N,表示Mi和Mj具有亲戚关系。
接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
输出格式:
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
输入输出样例
输入样例#1:
6 5 3
1 2
1 5
3 4
5 2
1 3
1 4
2 3
5 6
输出样例#1:
Yes
Yes
No 思路:简单的并查集入门题 难度:普及-
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n, m, k;
int fa[];
int find(int x) {
if(fa[x] == x) return x;
else return fa[x] = find(fa[x]);
}
int main() {
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i <= n; i++)
fa[i] = i;
for(int i = ; i <= m; i++) {
int a, b;
scanf("%d%d", &a, &b);
int x = find(a), y = find(b);
if(x == y) continue;
fa[y] = x;
}
for(int i=;i<=k;i++) {
int a,b;
scanf("%d%d",&a,&b);
if(find(a)==find(b)) printf("Yes\n");
else printf("No\n");
}
return ;
}