比赛地址:http://acm.hdu.edu.cn/contests/contest_show.php?cid=804
题目编号:第一题 A. Ascending Rating hdu6319
题意:
给定一个序列 a[1..n],对于每个长度为 m 的连续子区间, 求出区间 a 的最大值以及从左往右扫描该区间时 a 的最大值的 变化次数。
题解:按照 r 从 m 到 n 的顺序很难解决这个问题。 考虑按照 r 从 n 到 m 的顺序倒着求出每个区间的答案。 按照滑窗最大值的经典方法维护 a 的单调队列,那么队列 中的元素个数就是最大值的变化次数。 时间复杂度 O(n)。
我的理解:由于从前向后的顺序来做的话,当窗口向后滑动一格时,当前L的值若比L-1的值小的话,那么可能会出现之前没有在队列里的值需要重新进队的情况,所以很难做到O(n),ljj虽然有想法,但是直观上来看,从后向前的顺序更简单一点。因为每次向前滑动一格,队头如果是R,那么去掉队头,如果不是R那么R值对后面也没有用且R值本身并没有在队列中,所以是O(1),对于L,将L值插入单调队列并设置为新的队尾即可,新队尾之前的部分在之后不可能再用到,所以每个值最多只可能在队列中被新增和删除一次,所以平均每个窗口滑动对于L值得操作也是O(1)的。队列就开个足够大数组往后挪就好了,懒得写循环队列了。然后取模本身是很慢的操作,尽量少取模吧(删了几个%就ac了)。。。
自己的代码还是参考了下题解的:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<cmath>
using namespace std;
int T;
long long n,m,k,p,q,r,MOD;
long long a[];
long long q1[];
long long ans1,ans2;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld%lld%lld%lld%lld",&n,&m,&k,&p,&q,&r,&MOD);
for(int i=;i<=k;i++)
scanf("%lld",&a[i]);
for(int i=k+;i<=n;i++)
{
a[i]=(((p*a[i-])+(q*i))+r)%MOD;
}
int top=;//用来记录当前单调队列队顶的位置,因为数组大于总共的ai的个数,所以不需要每次把新队列整理,而是动态的用这个空间,记录当前队列的队顶队尾即可。
int rec=;//队尾的位置
for(int i=n;i>=n-m+;i--)
{
while(rec>=top&&a[i]>=a[q1[rec]])rec--;
rec++;
q1[rec]=i;
}
ans1+=a[q1[top]]^(n-m+);
ans2+=(rec-top+)^(n-m+);
int i=n-m;
for(int l=n-m;l>=;l--)
{
int r=l+m-;
if(r+==q1[top])//当新区间不包括当前队顶时,则更新队列,去掉队顶,队尾前移。
{
top++;
}
while(rec>=top&&a[l]>=a[q1[rec]])rec--;
rec++;
q1[rec]=i;
ans1+=a[q1[top]]^i;
ans2+=(rec-top+)^i;
i--;
}
printf("%lld %lld\n",ans1,ans2);
ans1=ans2=;
q1[]=;
}
}