案例目标

简单介绍 redis pipeline 的机制,结合一段实例说明pipeline 在提升吞吐量方面发生的效用。

案例背景

应用系统在数据推送或事件处理过程中,往往出现数据流经过多个网元;

然而在某些服务中,数据操作对redis 是强依赖的,在最近的一次分析中发现:

一次数据推送会对 redis 产生近30次读写操作!

在数据推送业务中的性能压测中,以数据上报 -> 下发应答为一次事务;

而对于这样的读写模型,redis 的操作过于频繁,很快便导致系统延时过高,吞吐量低下,无法满足目标;

优化过程 主要针对业务代码做的优化,其中redis 操作经过大量合并,最终降低到原来的1/5,而系统吞吐量也提升明显。

其中,redis pipeline(管道机制) 的应用是一个关键手段。

pipeline的解释

Pipeline指的是管道技术,指的是客户端允许将多个请求依次发给服务器,过程中而不需要等待请求的回复,在最后再一并读取结果即可。

管道技术使用广泛,例如许多POP3协议已经实现支持这个功能,大大加快了从服务器下载新邮件的过程。

Redis很早就支持管道(pipeline)技术。(因此无论你运行的是什么版本,你都可以使用管道(pipelining)操作Redis)

普通请求模型

redis通过pipeline提升吞吐量-LMLPHP

[图-pipeline1]

Pipeline请求模型

redis通过pipeline提升吞吐量-LMLPHP

[图-pipeline2]

从两个图的对比中可看出,普通的请求模型是同步的,每次请求对应一次IO操作等待;

而Pipeline 化之后所有的请求合并为一次IO,除了时延可以降低之外,还能大幅度提升系统吞吐量。

代码实例

说明

本地开启50个线程,每个线程完成1000个key的写入,对比pipeline开启及不开启两种场景下的性能表现。

相关常量

   // 并发任务
private static final int taskCount = 50;
// pipeline大小
private static final int batchSize = 10;
// 每个任务处理命令数
private static final int cmdCount = 1000; private static final boolean usePipeline = true;

初始化连接

        JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxActive(200);
poolConfig.setMaxIdle(100);
poolConfig.setMaxWait(2000);
poolConfig.setTestOnBorrow(false);
poolConfig.setTestOnReturn(false); jedisPool = new JedisPool(poolConfig, host, port);

并发启动任务,统计执行时间

public static void main(String[] args) throws InterruptedException {
init(); flushDB(); long t1 = System.currentTimeMillis();
ExecutorService executor = Executors.newCachedThreadPool(); CountDownLatch latch = new CountDownLatch(taskCount);
for (int i = 0; i < taskCount; i++) {
executor.submit(new DemoTask(i, latch));
} latch.await();
executor.shutdownNow(); long t2 = System.currentTimeMillis(); System.out.println("execution finish time(s):" + (t2 - t1) / 1000.0); }

DemoTask 封装了执行key写入的细节,区分不同场景

    public void run() {
logger.info("Task[{}] start.", id);
try {
if (usePipeline) {
runWithPipeline();
} else {
runWithNonPipeline();
}
} finally {
latch.countDown();
} logger.info("Task[{}] end.", id);
}

不使用Pipeline的场景比较简单,循环执行set操作

            for (int i = 0; i < cmdCount; i++) {
Jedis jedis = get();
try {
jedis.set(key(i), UUID.randomUUID().toString());
} finally {
if (jedis != null) {
jedisPool.returnResource(jedis);
}
}
if (i % batchSize == 0) {
logger.info("Task[{}] process -- {}", id, i);
}
}

使用Pipeline,需要处理分段,如10个作为一批命令执行

         for (int i = 0; i < cmdCount;) {
Jedis jedis = get(); try {
Pipeline pipeline = jedis.pipelined();
int j;
for (j = 0; j < batchSize; j++) {
if (i + j < cmdCount) {
pipeline.set(key(i + j), UUID.randomUUID().toString());
} else {
break;
}
}
pipeline.sync();
logger.info("Task[{}] pipeline -- {}", id, i + j); i += j; } finally {
if (jedis != null) {
jedisPool.returnResource(jedis);
}
} }

运行结果

不使用Pipeline,整体执行26s;而使用Pipeline优化后的代码,执行时间仅需要3s!

NoPipeline-stat

redis通过pipeline提升吞吐量-LMLPHP

[图-nopipeline]

Pipeline-stat

redis通过pipeline提升吞吐量-LMLPHP

[图-pipeline]

注意事项

  • pipeline机制可以优化吞吐量,但无法提供原子性/事务保障,而这个可以通过Redis-Multi等命令实现。

    参考这里
  • 部分读写操作存在相关依赖,无法使用pipeline实现,可利用Script机制,但需要在可维护性方面做好取舍。

扩展阅读

官方文档-Redis-Pipelining

官方文档-Redis-Transaction

05-01 06:50