在采用随机梯度下降算法训练神经网络时,使用 tf.train.ExponentialMovingAverage 滑动平均操作的意义在于提高模型在测试数据上的健壮性(robustness)。
tensorflow 下的 tf.train.ExponentialMovingAverage 需要提供一个衰减率(decay)。该衰减率用于控制模型更新的速度。该衰减率用于控制模型更新的速度,ExponentialMovingAverage 对每一个(待更新训练学习的)变量(variable)都会维护一个影子变量(shadow variable)。影子变量的初始值就是这个变量的初始值,
shadow_variable=decay×shadow_variable+(1−decay)×variable" role="presentation">shadow_variable=decay×shadow_variable+(1−decay)×variableshadow_variable=decay×shadow_variable+(1−decay)×variable
由上述公式可知, decay" role="presentation">decaydecay 控制着模型更新的速度,越大越趋于稳定。实际运用中,decay" role="presentation">decaydecay 一般会设置为十分接近 1 的常数(0.99或0.999)。为了使得模型在训练的初始阶段更新得更快,ExponentialMovingAverage 还提供了 num_updates 参数来动态设置 decay 的大小:
decay=min{decay,1+num_updates10+num_updates}" role="presentation">decay=min{decay,1+num_updates10+num_updates}decay=min{decay,1+num_updates10+num_updates}
import tensorflow as tf
v1 =tf.Variable(dtype=tf.float32, initial_value=0.)
decay = .99
num_updates = tf.Variable(0, trainable=False)
ema = tf.train.ExponentialMovingAverage(decay=decay, num_updates=num_updates)
update_var_list = [v1] # 定义更新变量列表
ema_apply = ema.apply(update_var_list)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run([v1, ema.average(v1)]))
# [0.0, 0.0](此时 num_updates = 0 ⇒ decay = .1, ),shadow_variable = variable = 0.
sess.run(tf.assign(v1, 5))
sess.run(ema_apply)
print(sess.run([v1, ema.average(v1)]))
# 此时,num_updates = 0 ⇒ decay =.1, v1 = 5;
# shadow_variable = 0.1 * 0 + 0.9 * 5 = 4.5 ⇒ variable
sess.run(tf.assign(num_updates, 10000))
sess.run(tf.assign(v1, 10))
sess.run(ema_apply)
print(sess.run([v1, ema.average(v1)]))
# decay = .99,
# shadow_variable = 0.99 * 4.5 + .01*10 ⇒ 4.555
sess.run(ema_apply)
print(sess.run([v1, ema.average(v1)]))
# decay = .99
# shadow_variable = .99*4.555 + .01*10 = 4.609