牛客多校第三场 F Planting Trees

题意:

求矩阵内最大值减最小值大于k的最大子矩阵的面积

题解:

矩阵压缩的技巧

因为对于我们有用的信息只有这个矩阵内的最大值和最小值

所以我们可以将一个长度为i*j的子矩阵给压缩成一个1*i的序列

那么压缩成一维就是求区间内最大值减最小值大于k的最长长度了,这个问题用两个单调队列维护即可

代码:

/**
*        ┏┓    ┏┓
*        ┏┛┗━━━━━━━┛┗━━━┓
*        ┃       ┃  
*        ┃   ━    ┃
*        ┃ >   < ┃
*        ┃       ┃
*        ┃... ⌒ ...  ┃
*        ┃       ┃
*        ┗━┓   ┏━┛
*          ┃   ┃ Code is far away from bug with the animal protecting          
*          ┃   ┃ 神兽保佑,代码无bug
*          ┃   ┃           
*          ┃   ┃       
*          ┃   ┃
*          ┃   ┃           
*          ┃   ┗━━━┓
*          ┃       ┣┓
*          ┃       ┏┛
*          ┗┓┓┏━┳┓┏┛
*           ┃┫┫ ┃┫┫
*           ┗┻┛ ┗┻┛
*/
// warm heart, wagging tail,and a smile just for you!
//
// _ooOoo_
// o8888888o
// 88" . "88
// (| -_- |)
// O\ = /O
// ____/`---'\____
// .' \| |// `.
// / \||| : |||// \
// / _||||| -:- |||||- \
// | | \ - /// | |
// | \_| ''\---/'' | |
// \ .-\__ `-` ___/-. /
// ___`. .' /--.--\ `. . __
// ."" '< `.___\_<|>_/___.' >'"".
// | | : `- \`.;`\ _ /`;.`/ - ` : | |
// \ \ `-. \_ __\ /__ _/ .-` / /
// ======`-.____`-.___\_____/___.-`____.-'======
// `=---='
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// 佛祖保佑 永无BUG
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define ls rt<<1
#define rs rt<<1|1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
const int maxn = 3e5 + 5;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + 7;
const double Pi = acos(-1);
LL gcd(LL a, LL b) {
return b ? gcd(b, a % b) : a;
}
LL lcm(LL a, LL b) {
return a / gcd(a, b) * b;
}
double dpow(double a, LL b) {
double ans = 1.0;
while(b) {
if(b % 2)ans = ans * a;
a = a * a;
b /= 2;
} return ans;
}
LL quick_pow(LL x, LL y) {
LL ans = 1;
while(y) {
if(y & 1) {
ans = ans * x % mod;
} x = x * x % mod;
y >>= 1;
} return ans;
}
int a[505][505];
int qmax[505], qmin[505];
int Max[505], Min[505];
int main() {
#ifndef ONLINE_JUDGE
FIN
#endif
int T;
scanf("%d", &T);
while(T--) {
int n, K;
scanf("%d%d", &n, &K);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
scanf("%d", &a[i][j]);
}
}
LL res = 1;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= n; j++) {
Max[j] = -INF;
Min[j] = INF;
} for(int j = i; j <= n; j++) {
for(int k = 1; k <= n; k++) {
Max[k] = max(Max[k], a[j][k]);
Min[k] = min(Min[k], a[j][k]);
}
int l = 1, hmax = 0, hmin = 0, tmax = 1, tmin = 1;
for(int r = 1; r <= n; r++) {
while(tmax <= hmax && Max[r] >= Max[qmax[hmax]]) hmax--;
while(tmin <= hmin && Min[r] <= Min[qmin[hmin]]) hmin--;
qmax[++hmax] = r;
qmin[++hmin] = r;
while(l <= r && ( Max[qmax[tmax]] - Min[qmin[tmin]] > K) ) {
l++;
if(qmax[tmax] < l)tmax++;
if(qmin[tmin] < l)tmin++;
}
res = max(res, 1LL * (r - l + 1) * (j - i + 1));
}
} }
printf("%lld\n", res);
}
return 0;
}
04-30 09:42