1)问题描述

n个村庄之间的交通图可以用有向网图来表示,图中边<v, v>上的权值表示从村庄i到村庄j的道路长度。现在要从这n个村庄中选择一个村庄新建一所医院,问这所医院应建在哪个村庄,才能使所有的村庄离医院都比较近?

2) 基本要求

(1) 建立模型,设计存储结构;

(2) 设计算法完成问题求解;

(3) 分析算法的时间复杂度。

3) 设计思想

医院选址问题实际是求有向图中心点的问题。首先定义顶点的偏心度。

设图G=(VE),对任一顶点k,称E(k)=max{d(i, k)}(iV)为顶点k的偏心度。显然,偏心度最小的顶点即为图G的中心点。

如图3(a)所示是一个带权有向图,其各顶点的偏心度如图(b)所示。

aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAEOAusDAREAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD+/igAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAz7LVtJ1K51ez07VNPv7vQNQi0nXrWyvba5udF1abSdK1yHTNXggmkl03UJtG1rSNZisrxYrp9J1PStSSJrK9s7iQA0KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD5g/ae8L/tKeKNN+FUf7O3jbw/4U/sr4v/AA61b4m2uq6Vd3Opa34CsfFui3F+LO/g8VeGvP8AD+i+U+sePPAttqOia38RPCUF/wCGNI8cabuvvB/iIA9Q+GHgDVvBEfjbVfE3iLT/ABN4w+I3jCPxr4x1TQ/Dt14U8L/2tZ+CfBXw90y38M+Gb/xL4x1TRtPi8LeAvDpv4dU8W69dXniR9e1i3vLHSr3TvDdiAen0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGfZatpOpXOr2enapp9/d6BqEWk69a2V7bXNzourTaTpWuQ6Zq8EE0kum6hNo2taRrMVleLFdPpOp6VqSRNZXtncSAGhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfHfxJ/4KGfsGfB7xjqvw8+Jf7YX7PPhTx7oLiPxF4Fv/i34Kl8aeGndpFhXxR4Wsdauta8Mm6aGdbL+3bGy+2vb3q2Zma1vAoB7n8I/jh8Ev2gfCaePPgL8YPhl8aPBclzJZL4v+FHj7wp8QPDH26EL59i2ueE9X1fTkvYMqLize5FzAxCzRK2QQD1GgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4Gvv+Cl37LNvrvi/QdJ0j9rnx23gjx18QPhp4g8RfCb/AIJvf8FIfjD8Ph46+GHjjxB8OviL4f0P4nfCj9k/xp8P/Fs3g3xx4W8Q+ENdu/CnibVtNtPEej6vpDXpvbO6jUAh/wCHl37N/wD0Tb9v/wD8VGf8Faf/AKCSgA/4eXfs3/8ARNv2/wD/AMVGf8Faf/oJKAD/AIeXfs3/APRNv2//APxUZ/wVp/8AoJKAD/h5d+zf/wBE2/b/AP8AxUZ/wVp/+gkoAP8Ah5d+zf8A9E2/b/8A/FRn/BWn/wCgkoAP+Hl37N//AETb9v8A/wDFRn/BWn/6CSgDAuP+CrP7Iln4q0bwLeeHf23rXxp4h0DxN4r8PeDLn/glR/wVVg8W694U8Hal4Q0fxj4o0Tw3L+xemr6t4e8Iar488E6V4p1yws59L0DU/FvgzT9ZvLW88QaBFcgG/wD8PLv2b/8Aom37f/8A4qM/4K0//QSUAH/Dy79m/wD6Jt+3/wD+KjP+CtP/ANBJQAf8PLv2b/8Aom37f/8A4qM/4K0//QSUAH/Dy79m/wD6Jt+3/wD+KjP+CtP/ANBJQAf8PLv2b/8Aom37f/8A4qM/4K0//QSUAH/Dy79m/wD6Jt+3/wD+KjP+CtP/ANBJQAf8PLv2b/8Aom37f/8A4qM/4K0//QSUAH/Dy79m/wD6Jt+3/wD+KjP+CtP/ANBJQAf8PLv2b/8Aom37f/8A4qM/4K0//QSUAH/Dy79m/wD6Jt+3/wD+KjP+CtP/ANBJQB9i/C74l+BfjV8MPhx8Zfhf4gh8VfDj4seBfB/xL+Hnim3tNSsLfxJ4F8c+HdO8UeEvEEFhq9np+q2MOs6HqlhqMVpqljaalbx3CwX9nb3aTQgA7qgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+YP2nvC/7SnijTfhVH+zt428P+FP7K+L/w61b4m2uq6Vd3Opa34CsfFui3F+LO/g8VeGvP8P6L5T6x488C22o6JrfxE8JQX/hjSPHGm7r7wf4iAPUPhh4A1bwRH421XxN4i0/xN4w+I3jCPxr4x1TQ/Dt14U8L/wBrWfgnwV8PdMt/DPhm/wDEvjHVNG0+Lwt4C8Om/h1Txbr11eeJH17WLe8sdKvdO8N2IB6fQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8EeOb/AFn9rf45fEn9m3RfEPiLwt8APgTD4b0r9pXxD4M1/VvC/i74o/Fjxl4d0bxx4f8A2cdE8Y6DeWWv+EPB/hj4ca94d+IHxu1Pw1e6X4o8S2/j74W+A/D/AInstBT4v6NdgH158Nvhb8MPgx4O0v4efB/4deCPhb4F0RDHo/gv4d+E9B8HeFNLQhA40/w/4d0/TdMtDII08xobVWkIUyMzDcQDwn4wfsl+B/Gnii4+Nvwpj0n4KftQ6dZovh/49+EtBtLXWPEa2XmzWHgX46adpj6Ufjj8INRnIt9c+H/jC+lm063uLrxD8M/EHgr4l2vh3x/YgHYfsw/HE/tC/B7SvHWp+Hh4M8b6Pr/jX4afFzwB9vOp/wDCA/Gf4W+MNa+HvxR8I22qNb2kmt6Fp/i3w7qdx4L8UNZWUXjLwJdeF/HOn2UOk67p4IB9A0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8Af8ABND/AJNu+Jf/AGf/AP8ABXP/ANe1ftuUAff9AHn/AMUviX4b+DvgHXviR4u034gavoHh3+y/7Q074W/CL4tfG7x9cf2trenaFaf2D8K/gp4I+IPxJ8VeVealbz6p/wAIz4T1T+xdETUfE2u/YvDWmazrEIB8ATf8FYvgJ4h8A+MfiJ8EPgr+1/8AG/QPhx/wsm8+J+sT/s0eNf2TvAPw38N/B7W/E3hb40eJfGHx3/4KN3H7FP7PVp/wp3xh4X1Twf8AEnwPp/xev/i14a1qz8S3d58Oz4a8EfFnxDoIB9Afsz/tSfEj9ov+yNR8R/sH/tf/ALL3hPxB8P8AT/H+g+MP2mP+GS9A+2f2r/wj02l+CNX+HHwt/a0+Lvxn8B/EC403W5tU1Dw18R/hj4W/4Rr+xPEPh7xpfaH41h0zwxeAB+1v+2b8KP2Lrr9mXVPjd4k+H/w/+Gnx4/aA1H4FeJvi98Uvij4a+FngH4S+V+zL+0r8ddF8V694g8WRRaDqH/CSa98CtL+Fml6FqGueHfP1vx1pupWes3Woaba+FNTAOg+Cf7b/AOxL+0x4s1DwH+zd+2J+zB8fvGuk+H7vxZqvg34J/tB/CL4o+LNM8J2Op6Po994n1Dw74F8Z6/qtl4fstV17RNKu9aubRNMt9T1bR9Pmu1u7+yikAPH/AIj/APKVz9i7/swD/gpz/wCtLf8ABHugD7/oAKAPgD4o/wDBRL4O/BP49+P/AIQfEjQPiBcaB4Z/4Z+8EeFfGfwc+Ffx1/aQ8SeOv2lfi74K/ar+MPi39mi1+Ev7PHwe+JnjDRviB8G/2ev2f/CX7RXjKOcXd3afCX4yfDbxb4m0Twx4a1fwD4h8TAHP/s5/8FMfhL8atS+Cvw5+Ivwn/af/AGdPjn8YvEHjHwFoPgH4y/saftxfDv4da38RfAXhL4m+OvEGmfD74+/F/wDZe+E3w/8AE/h/xP8AD/4S+Nfiz8K5PF0ngH4p+JfhZa2Vx46+Dfw++K0fi34Q6OAff/izWdS8N+E/E/iLRvCPiDx9q2g+H9a1nSvAnhO58JWfizxrqWmaZd3tj4R8MXnjrxV4K8GWniDxLc28Wj6Lc+MvF/hnwlBqd5aS+JfFWi6Kl/rEIBz/AMLPil4B+NfgHQfiX8M9e/4SDwn4g/tSC2uZ9L1vQNa0rWtA1vUvDPi3wf4w8I+JtO0fxX4B+IHgHxXo2t+CPiT8NvG+i6J8QPh18QNE8S/D/wCIPhnQ/Guh69oVuAeQfH39sP4F/s0eLPh34D+Jj/GDVvGvxS8P/ETxZ4H8G/BP9mD9qL9pTxZqXhP4Xan8NdH+IPifUPDv7Nvwc+LOq+GPD/hnVfiz8PNKu9a8UWmlaZcan4o0fT9Ou7q7eeJQD4g+Dn/Ban9lX4o/ZbbUfh5+1/pF74x/4TLxv8B7vwf/AME8f+ClPxM8N/tH/s1aT/wrbVfDP7S/wZ1Dw/8AsYWeva58P7nQfjD8MdG+IsmqeFNMtPAnxa1q78KeHtc8efCXVPgl+0B46AP1e8JeJtN8a+E/DHjPRrbxBZ6T4s8P6L4m0qz8W+EfFvgTxZa6brmmWuqWNt4n8CeOtE8OeNPBHiCC2uoota8I+MtA0bxb4d1NbrRPEuiadrdpfWCAHQUAfAH/AASa/wCUUX/BMb/swD9iz/1mv4Z0Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH86n7dH/AAcUfDH9kH9qDQP2HfAH7Ef7VH7QX7WXjPVdA0XwD8M7CD4d+AvDfi7UfFN/Pp3hdLLxPc+LfF3iazttduIHntdRvPh0umx6UlzrE92lhbXMoAP0B/4JcXvjS++D/wC0LN8XPD2ieFPjo/7a37V198dPC/hzxFdeK9C8N+Mdc+JU/iTwb4e0bxVe6F4YvfE+jaH8Gda+FmlaF4jvPDOgXGuaDaaTrJ0Gzju44yAecePP2rf26vif8TP2pI/2GvAHwI8e+FP2Mfjh8KvgT45+EHxJ0vXE+KH7R3i3WPDvwg+JfxmX4c/Gc/HX4cfD39nSy+GPw2+LOmr4fvvGvw9+ME/jPxppHiCxuNI0G3i0y0vHkMJ4p8M55nHLHhXifinOeHYrANQzfIMi4f4jzXgrO/EHMK1V4qjmtHBcVZZm1uBMvwFHNa/DfDzzLDcT1s34nwuQ5POfc+ArZxkWX8suIsq4BwXGtGWIcq2BzTN88yziDNuFeB6eFisD/Z9XOMNk2VUKvF1fNq2X4DGcUR+uZHTw3DGPr5n+gXgr9ov4P/ET4wfE34H+DvF2n6145+E+n6LeeMLO1u7BraO51G/1bTtV0jSWF8bvWdQ8D3djptp4/lsLKXSfC+reI/DfhrUtVHit9Z0KzRR+QHgP9rX4hfsl/tTf8FK/iV48+C+oeJ/+CfviL9tDSYdQ/aE+F51nxX4w/Z6+IXhr9ij9jLwj8YPFPxa+Ethps+q337O9x4+8PeJotb+KHw8/trWfhx4/0r4i6z8T/CkfgDUYfG2lgH7l+D/GHhH4heFPDvjrwD4o0Dxp4N8WaRYa/wCFvF3hXWNP17w14j0HU7dLrTdZ0LW9LubvT9V0zULZ0uLO+srma2uIXWWKZ0OSAdHQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfAH/BND/k274l/9n//APBXP/17V+25QB9/0AFAH80OteEv2fPGvwW/Yc0b9qrwx8H/ABZ+z/Z/8F3v+C4Xiz4s6V8f9F8D658FrXwn4EuP+DiHx1ceJ/iLY/ES1u/BkHh/wRc+HLbxlNrXiWNdM8O3GjW/iWS7tJdOjv4wD2D/AII2/B/Rfg58V9ftv+FAfD/9nX4l/EL/AIJAf8ES/il+0d4B8AfAL4f/ALOX2j9pXxV4m/4KfR/F/XvG/wAIvh34G+Hug+FfiBNr2l/2L4l0v/hFNKu9F/sex8Kf2dY6foun6TAAeP61r3iz4nfEW+8V/tV/tb/8Fnvhh8VP2eP23/20vFnwP8D/AAA/4JL6n8Q/gt8OvCek/FP9rv8AZs+AHif4dfEHQ/8Agiz8edP+Lfh/xZ+x18SrZoda8S/Fr4laZrFx4zn8YSXcPjGz0SfTQD9L/wDgnl8Vfin4g8EftgeIPjh8Vf2kPHXwv+Hn7SE2n/Aj4w/tqfs3ad+yT8VNW+AFj+yV+yz4z8W674h8Bzfsv/shQDwf4X+OOv8Ax40LTfHmq/CPSFutO0K7s5vEGsafo0OrEA4Dwh+0X8H/ANpL/gpp+xz4r+Evi7T9ftLD9hD/AIKmWWo6W13YQ+KNJtrX9rr/AIJPaBo2r+IPC630+teGNP8AGkXhu88Q+EIvElnpmr6j4bltb260qyvhfadCAfrdQAUAfxRftU6tP+y94n+LfhD4l/EfxB8ePiF4Y/4LvaJ+058ZvGfib9rj42/sF+HvDfwv+Mf/AASf/YP/AGV/ib8Vrb9qf4c614z+Jn7MX7MH7Nf7RH/BTz9nHwP4Q+F/h/xj8Q/iR4R/ZSuND+Gep3/xE+GHgj40/EqAA9A/4Jkft3fsz/tS/tefsU3Nn8NvD91411r4wajpnw00DxB/wcLft+ft2/F/4P8Aizxl/wAEqviX+0vq3xfb9jr48+Gl+H+q+H/CHw/8feN/2NPil4/vtah1P4V/tJaj8TvhxpEeo3ehf2xeAH7P/tdftMfFfVPFHxs8EfDnV/8AhHfhp8Bf2v8A/ghj8Gb74geEL/xN4W8fS/Hv43f8FGvgH4k/ak+BniO9TxFZS658P7n9lD4wfsq3s76P4dj8FeJ9E+NnxM+HGteMvF2oWPj7wB4YAPf/ANs34paL+x18A/EnxK+EOvfD/wCHd78Df+Fo/tvfEz4F6Rpfw/sL/wCPH7NXw+8bJ47/AOCgOoaH4GOnWOva58QLnQfi/rvxQ8K+M/DWv+BbTUP22te/Z/b9oX4rRfCXx38VPDniMA+QP+CmM/7PPh79sf8AZj+KP7UvjD9oDwJ8Ffgv+wB/wU1+KXjnxb+zd8Sf2z/h54+8P6Lo/wC0X/wSL0bUde1m5/Yh8S+HvjP4i+H/AId03X77xD450t11T4f+H9E02T4o+O9Os9J8GL4u0wA/ID/gnf8As3+FZPj3/wAE/wD4J/tMQftf/Br/AIQD9kD4n/sfeAte8N/tTf8ABzR8K/8AhfHx7g8Ffs5/FFj8PtT/AGhP2R/2HfhV+yl8P7X4VfscfG7xze/s7fDH4vz+CvEezwLo9p8P9Y/4VP8ADrVdMAP6rvFv7W/7OngL4wN8EvGnxV8H+FfGFr4PufGWtTeJPEvh7w/4d8O2wv8Aw9aaR4f1zXdc1jTrS28YeJ7TXD4g0Lwrb/adXbwtpuoeI9Wg07Srvwzc6iAeofCbX/Ffiz4UfDHxV480T/hGvGviX4f+Ctf8ZeHP7M1PR/7A8V6x4a03UfEWif2PrE9zquk/2TqtxdWP9marcTanY+V9k1CeS7jmkIB8f/8ABJr/AJRRf8Exv+zAP2LP/Wa/hnQB9/0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAQXTXSWty1jFbz3q28zWcF1cS2trNdCNzbxXN1Da3strbySiNJriK0uZYY2eRLWd0ETY4j6wsPiHhFRlilRq/VY4iVSGHliPZz9gsRKlGdSNF1ORVZU4SqRpubhGU0k9cOqEq9COKqVaWGdWksRVw9GFevToOaVapQw9TEYanXqwp3lSo1MRRhUnanPEU4t1T8o7tv24fgl+3B+x14ZvP2ovEP7RvgD9o+L9oB/2jPgp4n+EfwO8O+CfgVoHgr4d2ni7Sfi3+z14s+HXw08B/EvQPAnhP4nX3gr4Lnwv8eviD8bPEuuaL8T/AAxPc+JLnxfpWoeLZO/JPqcsw4pyTEvEZhl+X8F/2/lfEuMpPDZvhuIMHxhw9keX5Lm6y5xyCa44yfO89zbA5XDA4bNMPPgrN8ZlOY47KcHxMqfLnTryybAZ7g6NLLcyfGPD/D8+GsFWqZhleKyPNcp4hxmYYupmGPoU8y/tPhzDcOxx2Lz2NXLskzjMMZWwWG4WympmfDuRUP1TstW0nUrnV7PTtU0+/u9A1CLSdetbK9trm50XVptJ0rXIdM1eCCaSXTdQm0bWtI1mKyvFiun0nU9K1JImsr2zuJOY1NCgDzH4xfGn4Q/s8/DjxJ8Xfjp8SfB/wq+G/hK1F34h8a+Ode0/QNBsFdzFaWou7+eEXmqanc7LHRdFsRcaxrWqTWuk6NYXmp3NtauAfnSPHf7an/BQMi2+DVr47/YJ/ZDv3g+1fHXxv4Xt9L/bd+PHhyZszf8ACi/hN4s0/ULL9lfwdrdruWz+Kfxs0TU/jXcWFwt14X+CXgu+XSfHtAHu/wAFv+Ca37Gf7P3xD+GnxR+Gnwi02y8b/Cnw78SdJ8I+LtdvL/xX4zn8UfF+58MP8X/i7408deJ59W8Y/Ef4zfEmw8HeG/D/AIh+KnjrXta8ZJ4WtNS8M6VqtnoWu+JtPuwCT4i+G/F/7M/xr8d/tRfDfwZ4o+I/wz+MFj4Uj/ai+FHgHSJtd+IGm+KvA+hQ+FfC/wC0z8M/Clo39pfELxBZ+A9K0D4b/F74baHBfeO/F/w+8H/C/VvhRp2p+M/A83w48XAHzP4c8EfsM/HH41/Fb9pn9nf/AIKFeIvh9D8Z18FQ/tZ/Bn4R/GX4AQ+Afi3qnw40eXwhbj4zeC/in8L/ABt8WvgP4+Hg0Wfw4+IF38JPFXwS+I11oOjeH7HxXcx+KdD0zV4Vk8Vk0KuEppY3J5Z9jOKcPkGPjGWVYTiXMKWBjmOa0fqywuPr0syr5VlWOzPh/MMfi+E8yxOClTzPIMTgcz4nwePvM6lXM44Gr7SeBzXL8qnkNDP8vk6ObyyL67Vx+Ey2tKq6+Cq/2TiMXmksjzWWB/t/Jo5rmEMqzfDqGWvD+l2X7WfwH+KHjX4mW3/BO+HwZ+0D+0N47ktfhx8Rfid4Fhv9Y+AHwp1L4Xap4x8Kab4q/aP+Imj3Vp4Vmv8AwDLqGrRaF8NPC+qXfxx+K2ix+FtI0G2s/hJBbfFTw9Tbbbbbbbbbbbbu2223dttttu7u3q223lCEKUIU6cI06dOMYQpwioQhCC5YQhCNoxjGOkYrSK0Wmp9n/s/fBLw7+zz8H/Cnwl0DUtT8RjRxrer+KfGXiH7K/ib4i/ETxl4i1bxp8Tvid4ua0gt7OTxT8TPHfiDxF428SiytrfTU1nWb2DS7O10yO0s0RR8E+Lf2PvjL+x54p8RfG/8A4JmxaCvhfXtWvvFXxk/4J3+LNah8L/s//FTUr25kvtf8Yfs3+IWtLi0/ZU+OWsuZ7m5j0+zl+AfxJ1iWJviL4P8AD/iO6uvizbgH1z+y3+2D8Gv2t/D/AInufh9ceIfC3xA+HGq2/hn41/Ab4naHL4L+O3wO8Zz25uI/C/xS+H19cTXujvfQpJd+GfFOmT6r4A8daOv/AAkfw68XeIvDTxay4B8Q/wDBVH9tD46fAHwToOhfsuSaXp3iTQfjR+yBZfHj4nappuja3YfDz4ffGf8Aal+FvwwsPhzoOj65Y6lpmr/Ev4t6LrniKb99ZXSeAfhtpur+K9SfR/Ffib4MX99lkLlmniF4aZVVnBcOZn4p8O8FZ+knUr51jcfldbOMbwvhZ0nGWWQwGTYnK88z/NvrNHMsJSzLhLLMlwOMhn2c57kuuaRWA4P43zGko1M8wXhzx3xTktKo37PK8LkeSZpHD8U42hGcZ4iFTO8PHK+GMDXVPLc3zTBcS47E18dguEs94WzD9cpNW0mHVrLQZtU0+LWtR0/U9W07RpL22TVr/SdGutHs9Z1Sy055hd3Wn6Rd69olrqd7BE9tY3WraPb3c0c1/YrLqZGhQAUAFABQAUAFABQAUAFABQAUAFABQAUAfiH+xJ/wUI/4J+fAj4W/Gj4U/HL9un9kL4OfEzwx+37/AMFXH8TfDf4q/tOfBD4f+P8Aw8mu/wDBU39snxLoL674P8XePNH1/SF1vw9rGk+INIbUNPgGo6FqWmaxZNNp15aXUgB9e/8AD2T/AIJR/wDSTn9gD/xNL9mr/wCehQBz/iz/AIKff8EkfGvhPxP4M1n/AIKh/sQWek+LPD+teGdVvPCf/BQD4L+BPFlrpuuaZd6XfXPhjx34F+Nnhzxp4I8QQW13LLovi7wbr+jeLfDupraa34a1zT9bs7HUIwD5Aj/aE/4I7x/C/wAAfs8XH/BXT9iDXP2eYPEHxf8AiH+0b4D8R/tgfsr3Xiz9r34ofFv4kap8WvGlx8bPFui/FHw94Y074P8AxP8Aij45+KXxM/aB/Z7+HXw28LfDj4u6nr3hT4LRw+Ev2KtP+L/7JXxAAPQNM/bn/wCCZ3wz8V/F/Xv2e/8Agr9/wTg+Hnhz4seH/H/ieb4VeMv2jv2fPH/wv8IftT+JdTj1e2/aB8G6Jof7TXwz1Xw54f8AHuq3/iDxN+1D8E9E17TvDvxt+JEumfGzwT4o+D3x18S/tT/E34qAHn+n/GH/AIIQW3hP4N+EtZ/4KZ/sQeMbb4ZeIP2ltf8AG194v/bN/Yy1ef8AaVt/2v8ATPizeftbeBv2kdK/ta28MeLvg/8AtG/FL4pyftDfEn4EeDfD/gn4JTfG3wH8D9T8NfD7Rfh/8M/Anw6tADoPhv8AtY/8Eo/hd8V/2ffiRo//AAWc/ZA8Vf8ACoP2QNa/ZL+Ieo/Ef9tr9mrxT8V/2mv7O8TfArXfg18Yv2g/ipa/FvQv+E/+IHwc/wCEH+N8+i3OueE7/wD4qb9pj47eJvCN34N/4STx1pPiAA8vb9vj/gk18O/+ChP7H0/wx/bw/YQ8P/CDwb+xh/wUz0XUdS0D9rT4AH4feD/GvxY/an/4JhfEHRfCc+rL8SptF8Mah40k8NfEjXvBXg77VZRzaH4X8Ww+DdHTw54Xv7a0AP0P/wCHsn/BKP8A6Sc/sAf+Jpfs1f8Az0KAD/h7J/wSj/6Sc/sAf+Jpfs1f/PQoA/KDx1qH/BHfx9+0H8ev2kNW/wCCz/7EEvjX4qftP/sj/H3wDpVz+1H+yu/hP4MeE/gL44/4Je+Ovi58OtFsdN+NWkar438QftR6r/wTK+DNv4n+InjXW7/TPhjpmmeDoPhP8NdJu7P43X/xHAD4N6h/wR3/AGcfE/7INv8ABX/gs/8AsQRfCv8AZu+MGgfGvxX4T+J/7Uf7K/jT4i/EnxZ8Ov8Agk94b/4JT/B/T/D3xK8K/Gr4Y+Hfht4f0b4Q+H1+I3xLtNS+Fnj3U/H3xTuWk8J6x8OfB8Q8LOAfcHxS/bM/4ImfFD4O698Fo/8AgpH+wB8N9A1P4gaX8ZtF1f4W/thfsieGda8G/HvQPjrp37S/hj46aDYXPi7V/B+sfEDR/wBoXSdN+OOqJ4+8KeLPBXxD+IEWov8AGfwd448NeIPG3hzUwDx/4S/tKf8ABL/wB+0H4b/aQ+Jv/BwH8H/2nfGvgv4P/Fn4J+B9K+Nn7W//AASj8O+E/CfhP4yeOPgN46+IOoafY/s2/BH9nrVdU8Qarqv7Pfw8t7S78Ua3remaXplvrEGnaPDd6lPfgAPiT+2L+wZefGnxz8ZvgH/wXH/4JwfCXxH8bPD/AID+Gvxr8UeNfi7+zF8W/iLoPwW+F1v4hf4WeB/2WNSg/ah+G3wu+E3iDwF4n+Kn7QvxWsPHf7QnwY/amuNd+Kfxajg8b6Br3wK8AfD/AOA0IB4/4b8ef8Eo/gL/AMK+8Yfsf/8ABcb9kD4b/Fj4cfD+9+GWl3f7QP7X37NX7T/wE1/wZrP/AAgsOu+FofgDqHx0+F3/AAy78Pz/AMITpHiPRPgn/wAE1/iH+xZ+z/H418P/AAht/G3wm8ZfBX4Q/B74G6UAfeHhf/go5/wSag1XwX8SfH3/AAUx/wCCaHiL466N8L4Phv4r+J3g79qf4AeB9J8Q219deHdd8WW+i+ENS/aF8d6joXg/UPF+hDxB4R8KeJfGnjXV/BFtd3+lWfjXUrnUfFGtakAen/8AD2T/AIJR/wDSTn9gD/xNL9mr/wCehQA7/gk6jx/8Epf+CZMcisjp+wF+xcjo6lXR1/Zs+GasrKw3KykYZTyDkEEgkgH37QAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAZ+k6tpOv6TpmvaDqmn61omtafZato2s6Te22o6Tq2k6jbRXmnappmo2c09pf6fqFpLFdWV7azS211bSRT280kTrIwBoUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAU9RfUYtOv5dItbO91SOzun0yy1G/n0zTrzUUglaytb/U7bTNYuNNs7i4EUV1f2+lalPaQPLcQ6ZeSxLayYYqWKhhcTPBUaGIxkaFaWEoYrE1MJha+KjTm6FHE4ulhMdVwtCrVUIVsTTweKqUKcp1YYSvOCoy2w8cPLEUI4qrWo4aValHE1sPQhicRSw7mlWq0MNUxOEp4itTp3nSoVMVQhVnanPE0ot1T8z/AIAeGf8AgpfpfxU1Xxj8efgj+xDp2o/ELxRYxeP/AIu+Bf2wP2gvidr3g/4O+Hta1C+8LfCn4V/BPxH+wT8GdONta6Rc3VhcaprHxwsIn+JHiLxT8adU0vWrFNM+DNd2V08FhsJTwuKq4mLqYapjc7xlHD08RjeIeJI5Ti8Pgn7Wti6EMh4cyvMa8P7ByPD0swo5Nw+szw9SOZ8fcRcbeJ2ZcOMeLrYqpi4KjWjRxFTC5JgKlWphsHkeQYjMcLLFwpclHFSx2e47BYXD4viLOqsaNfiXO8Ll2Fj/AGJwXlXBnCWS/Tv7P37K/g79nbX/AIr634Z8V/EDX/8AhZPxA8TeN4rLxT488dazZaNF4qsvCMmr2F/pmp+Kr7QfF3iBde8P3t9a/E7W9Eb4mzeH9RtvC3iDxTrP2O/1q/wOg8H+MX7e73PxH8S/s0/sR/DNv2t/2mfDV1/Y/j610zXZvDP7N/7N2pXECywXP7Unx+h0jXtG8HaxDBImoW/wV8D6f4x/aA1y0Ec0Pw60zw7ct4xgAD4OfsDmb4j+Hf2lv22/iW37XH7TPh66TWPAd5qugN4a/Zz/AGbtSlguIprX9lr4CSanrej+DdUt4rmXT5fjN441Hxj+0BrlmHhu/iPp+gz/APCKxgH6L0AFABQB+CfhnwpoXxW8L/8ABYv4leNP2bvAX7Yvxq+DX7avxd8Ffsx+EPit8OfBfxP1aDW7D9kz9lO5+Enwq8Lal480rVIvBHgmb4h+K3uLx1vtL8JeFoNc8T+LtYnsbAa7qlAHzV/waw+Cv2sfgd+xl8YPgJ+0xpMGoeH9F/aE+Ofij4LfErQ9Tn1vwtrn9jfHb4qfAb4++Abe6On6cdI1Hwb8bfgf4o8eQ2V/Y2cmteGfir4f1/SzM7a/pemAH9QNABQB8UftR/sReC/2hdf8O/GTwL4y8Rfs6ftYfDrS59M+FH7VXwutNO/4TrQ9Ke7Oot8P/iV4ev1Hh747/BHVtRVLrxJ8F/iVFqHhe5le41rwrceF/HI0/wAaWwB+HHx//Y+1n9qG98TfsrftDaZ8S/2b/wBuX4nfHX4J/GjQ/Hmk/t6f8FC9F/4J+ftkeHfhT8Wvhr43+Lfiz9nDwPpHxn17wH8OPjlpvwp+Heo3kH7O2u/DrTPir8KNTsNC8f8Awu8X658P/Ckvx70rlyfCQyriHw7xMJ13kXDHHi4mzbDyxeLxGaUsqx2ZcS55ntLhbG4mtPFZLmWKzvP8Tj8FPLcwylYH6zjqOAx+Dw03h59ONxDxmUca0JxpLM8+4Izbh3LKtPD4ehgJ5rLh3D5FkdXP8Lh6cKGZ5bRoYPB0M1pY7CZjHMMNSf8AaOAzCcqsZ/upcfsSfDaX4z6F8XY/HHxqjbSfgva/Bi40c/Hv47/23fabomq+GLzwvrb/ABNg+J9t8RJ7iC00jVI/GOl634i1nS/HfiTU7b4ja9CnxFh8SeJtZ9HFYmpjMTiMXWjQhVxNapXqQwuEwuCw0Z1ZynKOHwWCo4fCYSinJqnhsLQpYejDlp0aUKcYxXn4bD08Jh6WGpSrzp0YqEJYnFYrGYhpNu9XFYytXxNeWus61Wc2rJzskz7KrA3CgAoAKACgAoAKACgAoAKACgAoAKACgD8h/h9+zt4U/aq/am/4KWat8YPin+1yF+Ev7XPw1+Evw28P/Cj9vn9uz9n3wL4R+Hzf8E3/APgn58V59D0r4dfs9/tHfC7wOs198QPiv4+8V6lrtx4em8R6nqXiC6TUtXuLO10u2hAPef8Ah2j+zf8A9FK/b/8A/Fuf/BWn/wCjcoAP+HaP7N//AEUr9v8A/wDFuf8AwVp/+jcoAP8Ah2j+zf8A9FK/b/8A/Fuf/BWn/wCjcoAP+HaP7N//AEUr9v8A/wDFuf8AwVp/+jcoAP8Ah2j+zf8A9FK/b/8A/Fuf/BWn/wCjcoAP+HaP7N//AEUr9v8A/wDFuf8AwVp/+jcoA+QfGv7Enwt0f/goH+zH8D9O+M/7f1v8M/iD+yD+3V8VPGHhn/h67/wVNmbVvH3wh+OH/BN7wl8N9eGuT/tky+INOHhzQPjr8T9PbSdK1W00PWD4iW98R6ZqOo6N4Vu7EA+vv+HaP7N//RSv2/8A/wAW5/8ABWn/AOjcoAP+HaP7N/8A0Ur9v/8A8W5/8Faf/o3KAD/h2j+zf/0Ur9v/AP8AFuf/AAVp/wDo3KAD/h2j+zf/ANFK/b//APFuf/BWn/6NygA/4do/s3/9FK/b/wD/ABbn/wAFaf8A6NygA/4do/s3/wDRSv2//wDxbn/wVp/+jcoAP+HaP7N//RSv2/8A/wAW5/8ABWn/AOjcoAP+HaP7N/8A0Ur9v/8A8W5/8Faf/o3KAD/h2j+zf/0Ur9v/AP8AFuf/AAVp/wDo3KAD/h2j+zf/ANFK/b//APFuf/BWn/6NygDpv+CZ/jTxf8Sf+Ca3/BPX4i/EHxNrXjLxz48/Ym/ZM8aeNvGHiTUrrVvEfirxf4n+APw+1vxJ4m8Qaveyz3mq61r2r315qmq6ldzS3V7f3NxdXMrzSO9AH2zQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8g+MvB37X97+1BaeJvBHxQ+H+ifA8fCDXdI0zRvEHgPXvE9lo3j2TxZ4Gub1vFPhnSfi38Pb/xP4g17T7S6ufB3jq31mTRfCvh+w8UeDZvA+l6xq8vjXxCAfR3w88E6T8M/h94F+G+g3GoXeieAPB/hfwTo11q0ttPq1zpPhbQ7HQtOuNTns7OwtJtQntLGKW9ltbK0tpLlpXt7OCIrAADsKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD5/wD2jv2pfgL+yX4Fg8f/AB5+IFh4Q07VNTh8O+DvD9vaan4i+IXxL8ZXav8A2X4A+Evw38N2eq+Nfil491lkK6V4M8D6HrHiG7XfcJp4s4bm7UA+YV8O/tAf8FAPhLeaN8ZvA/xo/YL+FGreP9P1ay8M+DfjpoenftRfGv4K2+g+J7K88C/Gj/hCvBF4f2WrLxpqup6Frup6Z8HfjZ4g+Lq6BpJ8Lat438DahqfiXQQAfaHwc+Cvwh/Z4+HHhv4Q/Av4beD/AIVfDfwnam08P+CvA2g6foGg2Cu5lurs2ljBCLzVNTuWkv8AWtavmuNY1rVJrnVtav7vU7i5u3APTqACgAoAKAPzA/4Jt/8AJR/+CsP/AGk/+JP/AKyb+xnQAf8ABHb/AJMXj/7O/wD+Cn//AK9E/bIoA/T+gAoAKAOM8e/DvwR8UfDc3hPx94dsvEWivfaXq1vDctc297pOv6HqEOq+HfFHhzWbCe11jwt4s8L6tbWut+FfF3h2/wBO8T+GdetbHXfDur2OsWlpfIAfIX7Rf7Svxk/ZG8R+F/Gnjb4N6t8Wv2Qrfwtb2fxZ+NPwxXVfE3xz+CPiSz1HU/tPxK+IvwR0Tw+kvjn4KtoZ02bxh4n+EZv/ABp4G1K11vxPf/C6f4eyXOpaOAfYPgD4geA/iv4I8MfEn4YeMvDXxA8A+M9ItNf8I+NfB2t6d4h8LeJNEvUL2eq6JrelXN3YalZXCg7J7WeRNwdGYSK60AdfQAUAFABQAUAFABQAUAFABQAUAFABQB8Afsaf8nIf8FdP+z//AIaf+ul/+CWdAH3/AEAeTfHLxl8Tfh/8KPFvi74OfCa3+NnxG0uHS08LfDW/+I3h34V6Lrd3qGu6dpd1f+JfiP4ksdWsfB/hXwtp93d+LPFerWuheJPEcfhvSdVh8IeC/FHi19G8K3nFjcVLCRwtR/U6OGnj8FSzPM8zxv1HKciyaVdPNuIM0xFPDY3FPB5RgKeIxbw+BwOLxeKrxoYVU6NCpicxo9WEoU8RLEQnOupwwGZ18HhsJhXi8ZmeZ4bLsXXyrJMHRdbD0o4rPcwo4bKcPiMViKGCwlbFxxeNxEMLRrSPhX9i3/gp58M/2oPhb+1N8R/HmofAbwZpn7KHxXX4Z+PfHXwE/aWsP2ov2fvFNpe/Dj4eeP8ARPE/wz+MGm/DH4Vat4tbUG8dJ4Jm8Lt8OLDX1+Iek6j4R0SHWtUkt4z7ccJCtw5kfEeHlio0M2xnEuWVcNjcGsLXwuY8O53iMvq+ylDFYqljMvzPLZ5Tn+V43moV62AzSh7XAUqccPicR5lapiMHxFm/DmMhhVicuy/Ic2p1MJjHiefA53QxlP6tmOHq4bCYjKM6yzNsozrK8yyqrTrU6ccJhcdQzCvDGSoUf0E03x1/aHxW8afDH+yvJ/4RH4f/AAw8df239u8z+0P+FheJvjF4f/sr+zfsSfZP7G/4Vb9s+3fbrj+0P7Z+zfYrP+zvtFzwnSd/QAUAfAHxH/5SufsXf9mAf8FOf/Wlv+CPdAH3/QAUAFAH5k/G/wD4KkfDP9n2y1LW/Hv7OP7VU/hbWvHOkfCf9nvxV4a8F/CbXLP9rf4x6v40svA1p8KPgD4eh+N8XjfTfFs+tSapd6TP8fPCnwf8KeK/B3hzxf8AEjwF4n8Q/DnSZ/Fb8+Bq1cxqZDgsFg8TWzriaOX47Ich5sJTx2O4ZxmGoZnX4xr46rioZDk2QZNkGLwPE2ewz/Octz7Lcmxap18jed4LPMnwuuMpwwNHiDHYmvTjlPCtLMo8SZxCGJq0MozbLsZLKKnD9bLaWHnn+LzPE8Q063CuFxGW5Pi8inxHHC4CtnVGnmnDuJxv1t8I/wBoLTviRomsXHjn4bfEX9nHxl4b1nw1ofij4W/Hl/hpY+LdGu/GupppXw8uLbxL8MPiZ8VPhP4z074hXssOneFdR+HXxL8VWk3idr34e6rLp/xM0fxP4Msu+VGm8LDGYbF0MZQ+tYjLq86MMXTlg81wmFy3G4zK8TSxmFwtX6zhsHm2V4t1qEK2X4jD47C1cDj8RB1XHlU6irzw9XD1aMlQoYqhUlPDVaOKwleti8NCvTqYXEYiNCosTgMZQq5fjvq2b0YU6GPrZfDKcfkmY4v1Dwz410nxXrfxF0HTrfUIbv4a+MLHwTr0l7DbR213q198PPAPxFhuNIeC8uZbjT10bx/pFrLLeRWV0NWg1W3Szeyis9RuMDU7CgAoAKACgD4A/wCCTX/KKL/gmN/2YB+xZ/6zX8M6APv+gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPIfj58SPFnwe+C/wARvid4G+D/AIr+O/inwZ4cvda0T4S+CfEfw58KeI/GF3blV+yW/ib4o+MfBXgzQrCxiL6trupaprv2220Gz1OTw7ofiLxMukeFL7w+I84lw/kmZ5wsKsTDLsDj8dWdXEPDYPDUcFl+NxksTmNelQxuNpYCLwsaeIqZXlmbZpTVWNTCZNjHCdN+xw/lUc9zrLsoeKWEeYYqlhadT2Mq9WpWqzcKGFwtH2lGlUxuNqqOFwMcbisDlrxlWj/ambZdl6xOY0+Z/ZI+PP8Aw1T+yn+zb+03/wAIn/wgv/C//gh8K/jL/wAIT/b3/CTf8Il/wsbwRofi7/hGv+Ek/sXw9/wkH9if2v8A2f8A2z/Yelf2j5H2z+ybPzfsifecVZF/qxxNn3Dv1v67/YuaYzLfrnsPq31n6rXqUfb/AFf21f2PtPZ83s/bVOW/L7SVuZ/IZHmn9tZe8d7D6tbH5xgvZe19t/yK84x2V+15/ZUv94+p+35OT917T2PPU5Pay+hK+fPXCgAoAKAGu6Ro8kjqiRqzu7sFREUMWd2ZgFVQrFmJwAGJbAJoA/LrxP8At2fET9ozxLrvwg/4JkeCvDPxp1PRdSvPDnxB/bK+IR1mH9iX4L6xYX5sta0vRtd0O5sdb/aw+Jmi7J45Phn8EdUh8IaTrEa6R8VPjb4C1Bf7PmAPYv2cf2EfAHwW8cXHx++KPjPxV+1B+1rrel3WleIv2n/jHHp1x4o0fSdRw+qeB/gd4J0yGHwV+zn8K5pdyp8P/hbpmmnVrdLW5+IniHxl4lil8SygH3LQAUAFABQAUAFAH5gf8E2/+Sj/APBWH/tJ/wDEn/1k39jOgA/4I7f8mLx/9nf/APBT/wD9eiftkUAfp/QAUAFABQAUAfz+/wDBRP4Y/F7/AIJ6eB/iv+0x/wAE1vhx8dtYvfidb+Kbj42fsefBD4eaz4++DvxG8ReIrK8s9Y+MHgDw54Nu5vGX7L/7QMK3R8QH4p/C/wAK678PfHOq6fE/xn+GmteIZLLx9YAHrH/BEv8A4Kt6N/wUl/Y/l1/4ura/Db9q39ndtN+Hf7YPw28Q2jeEb/w340trWePTfiQPD+riyutA8J/E210+71i1tbuC3h8P+JbTxb4KEk6aBHqV0Afs7p2pabrFjb6npGoWWqaddoZLTUNOu7e9sbmMO0Zkt7u2llgmQOjIWjkZQ6spYsrEgF2gAoAKACgAoAKACgAoAKACgAoA+AP2NP8Ak5D/AIK6f9n/APw0/wDXS/8AwSzoA+/6APkf9uH9l/Uv2xP2c9f+BukfEWz+Guoaj4y+E/jW11vXvA3/AAszwDrL/DH4p+EviOfAvxW+Fh8X+BV+J/wr8fr4YPhP4h+A38X6BH4g8M6lf2UurxIxRsFHE0M34aznCTwcq/Dmf4TPqWEzLBTx2W4ythcNjqGGlXw9PGYKrTx2U4nF0eIuGc1w+Jp4zh7jHKuHOKMC5Y7K6EXvGdCeV8S5RiYYhUOJOG834crYvAYmGCzXL6WaUPZVMTl2MqYbGQoyrU1LAZnRnhqkMyyDGZvkk5UYY6eLh8kfCz/gmL4nj8Tftp6l+1N8cfhx8edB/bI8V/Dj4p61pXgP9nLWvgpr/wAJ/jL4D+Efg/4R2viv4V+KNV/aI+M0en+GoPD/AISt5fDvhfWdD1TxFZG+1bRvGnxE8a+F9R1vQrrsyx4fK+F58M04YitCHF/E3F+Fx1bEU3XjieL54XEcRYTGU4YWEMVRWMy/ASyKrR+qVcuwFPFYTNP7ZxuIjm1PixcK2MzjAZxKdCjLD8JZVwjicFh8M6eDeE4dzjPsXw5iMsi68q2Xyp5fnuKoZ/RxVbMoZpm9s0yeeQZSqXC9P9P/AAT8PPh98M9JuNB+G/gXwf4A0S71CXVrvRvBPhjQ/C2k3OrT21nZz6pcadoVjYWk2oTWlhZWst7JE11JbWtnbvM0VvCtZGx2FABQB8AfEf8A5SufsXf9mAf8FOf/AFpb/gj3QB9/0AFABQB+THxk/wCCcXxt+MfxD+FWrXX7ZyeFfhb+y7408W/Gf9kD4aeH/wBnzTG1nwV8etQ0rVtJ+HfiH9oPxrqXxXvdL+P/AMLvgrpfinxp4V8B/Czwb4D+COvXvgjXbSy8dfFbxH480ey+JUmGVQxGU4jCZxSq0a3EeU5Hl/CWS4+th5vKKPCbll2B4soZnk8cTHE5nxFx5wxldHhXPeJKOcYH+zsLj+I854SynJeIsdl2aYHozCeGzGlj8uqUsRh8n4iz+lxTxdHCYtUs8zHPKOa4/iKFTJc2nhquCyfLVxbi6HG/9i5lkmfZbU4mynh2niaNbhTA1uFcR61rH7D/AIx+L1t4X8V/tNfHmPxp8ZfDvxM+GnjVPFPwM8E+Ov2f/hbF4W+G+t6ldaV4H0T4Xy/Hj4r+KdK1C403xH4vuLf4nah8X9a+I/hjxt4jv/EHgTXdA8Fi4+GE/anh6WDWFw9OupVcwxmbY2ticRTruePxWCyfK3TwMYYXDywWWUsvyHLZU8BWqYyrHNqud5kscqOYUstw/EliJYipVq1KPslQoYXDUMPQqUkqdKri8RUxWMqVsVipYnMcRWxk6E62G+pZdDK8Jk+GpZVHM6OcZ1mH274J8B+F/h5pNxo/he11BIr7UJdW1bU9c8Q+JPFvijXtWltrOxGqeJvGPi/V9d8U+J9Qt9M07TNDsL3X9Yv7rTvDel6D4Z06aDw/pGj6bDianYUAFABQAUAfAH/BJr/lFF/wTG/7MA/Ys/8AWa/hnQB9/wBABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHzJ8f8A42eJfBut+Avgn8HNM0XxH+0H8ZY/Ecvgay8RxX914J+HngrwpHp48d/HX4p2mk3+naveeAfAM2ueHNJs/DWkajpms/EP4jeJPA3w00/xH4Wsdc174k6EAeN/8O5Pgh48/wCJz+1V4j+J37X3jK9/f6vefGz4g+K2+FcV0+6Rrbwd+zb4T1fw98B/BWk2EzumiyWfgG88aCySxHivx14l1u1/4SBwAH7CWmfBvPif9ib4leOP2fPFenfv7b4ba546+I/xP/ZW8ZxREsfC/jD4F+NPF+raX4H0u+GQniz4DXfw38e6ZqJtNSvNY8QaHbah4L1AA+jP2ffjjp/x48Ga1q0nh+88D+O/AHjLXvhb8ZPhjqt9BqGsfDT4q+F47CfWvDNzqMEFoms6Lq2j6t4f8efDvxWtjYQ+OvhR4r8BfEWx0qx03xFZ2agHudAHjf7Q3i3TvAvwJ+LHifVNI8b67aWPgnX7b+x/hx8NPiP8WfHGo3Oq2U+j2Nr4f+HPwr8KeM/Hfii5kvb638628O+HNRntLP7Rql8kOlWt9fR/IcfYfEY7gjivKsFh8RisdnOQZzkuXYfD0K1aVbMc0y3G4HA06s6cJU8Jh54jEUo18fjJ0cvwVKUsTj8XQwtOrWX0/BVahhOL+Gsfiq9HDYTLM6y3NcbXxFalRhSwOV4yOYY2cfaTjKvWjhsPUeGwWHVTHY7EOlgsvw+Ix1Whh5/lz+x3pH7Sniz/AIIjfst/DP4H6X8RfgV+0D8Of2Xfgt8IPFvhL43fCD4o/BL4m2Pif4b/AA08N+FviL4P8LW/xU0TwLqXhTXNSu7C4sfBfxXTS9T8G3mGl8N+I9JnurT4l6H+yeIeNwmbcZ8QZ9l2Jo4rLuIMyx2cZfUp1YOssLicfi4RpY3C831jL8ZTqUqkamExlOlWlTVLHYdVssxOX46t+YcIUK+CyvF4HFUK1DEYXPeI3UjVpVIU508fnmOzfB1sLXcfY4yhWwOYYWo62FqVaVHESxGX4mdLM8Jj8JS/ZrSY9Wh0nTIdevdP1LWotPso9Z1HSdLutG0m/wBWS2iTUb3TNGvNZ1+70jT7u7Es9lpd1rmrXVhbPFZ3Gs6hNE9/J8UfUGhQB80ftAfG7xD4E1T4f/B74R6Ro/in9oL41SeJIfhxoviAX0ng/wAHeFvCdpYT+Pvjh8UodKvLLV3+Gfw1OteG9Ou9M0i8sdX8a/EHxV8OfhbpmveHbjxY/jfSwDxf/h3R8GPH/wDxOv2sPFPxM/a+8Z3v77V7j4xePPFVt8I7e4clzZ+DP2avB2s+H/gb4Q0fT2ZrfRpj4J1bx4dOW3Hi/wCIPijXFu/EM4Bx/wAQP+CZ3wwtvAni/wALfs4+JfEnwj0zxZ4f1Xw34r+CHi7xT4++L37HfxU8K6raT2WqfD34lfs5eOvGGo6D4c8J69ZzS2Opaz8B774WfEFIpY1ufFWqaFbzeFrkA+mv2U/iR4L8dfC6Xwr4X+HGk/BXWvgf4gvfgj8RPgPottpNppPwb8Z+DtP0maLwj4eg0XTNF02fwHrPhTVvC/j34S65ZaJotv4o+EXinwJ4sHhvQ5dVm8PWoB9K0AFABQAUAFABQAUAfmB/wTb/AOSj/wDBWH/tJ/8AEn/1k39jOgA/4I7f8mLx/wDZ3/8AwU//APXon7ZFAH6f0AFABQAUAFAHzV+0Z8b9e+GK/Dv4cfC/Q9J8W/Hr45+Ir/wj8IvDWvT3sPhbSodF0uXXPHvxZ+IkmmOmpw/DX4TeHYxrWvw2EtnfeKvE9/4G+E2ja1o/ijxz4d1mEA8N0z/gmZ+yr4m8R/8ACz/2ovAui/tn/G2+htv7Z+KP7TXhzw/8Q9Ps5YJHmt9O+GXwk1jT7v4U/BjwvpMjCLQ9E+HvhHTNRaKG31Xxj4j8U+OJdZ8aXoBq6j/wTf8A2WPD99c+Lf2bvBNt+xn8UN4vbL4kfsm2el/Bz7bq8KgWtz8Sfhp4X0+1+Enx10xQkUVx4c+NfgPxpo0lvHC1pb2ep2ulapbAHq/7O/xs8SePNT+Jfwc+Lmm6PoPx/wDgPeeGLD4k2Ph2O9t/CHjXwr4ysdSvPhp8c/hzZ6le6hqmn/D/AOKkGg+JrKDQdWv9R1PwT8RfCPxO+Ftx4i8Up4Qi8fauAfTdABQAUAFABQAUAFABQAUAFAH4w/CD9kL4S/tA/td/8FY/GXjzxd+0/oWraZ+2/wDCnwzbWfwT/bn/AG4f2b/Ckum2f/BKr/gmZqsNzqPgT9nP9on4VeDNX8QPc63eRXfi/VdAu/F19pkWjaHf65caJofhzT7UA+n/APh2j+zf/wBFK/b/AP8Axbn/AMFaf/o3KAD/AIdo/s3/APRSv2//APxbn/wVp/8Ao3KAD/h2j+zf/wBFK/b/AP8Axbn/AMFaf/o3KAD/AIdo/s3/APRSv2//APxbn/wVp/8Ao3KAD/h2j+zf/wBFK/b/AP8Axbn/AMFaf/o3KAD/AIdo/s3/APRSv2//APxbn/wVp/8Ao3KAPiDx9/wT3+ANp/wUx/ZI8GRfED9t9tJ139iD/gol4mvry5/4Kif8FPLzxZBqXhT9oP8A4JV6VpVtovju8/bAn8Z+GvD93beNNXl8T+EfD2v6d4S8Z6na+Dtb8caJrWt+Cvh3qGlgH2//AMO0f2b/APopX7f/AP4tz/4K0/8A0blAB/w7R/Zv/wCilft//wDi3P8A4K0//RuUAH/DtH9m/wD6KV+3/wD+Lc/+CtP/ANG5QAf8O0f2b/8AopX7f/8A4tz/AOCtP/0blAB/w7R/Zv8A+ilft/8A/i3P/grT/wDRuUAH/DtH9m//AKKV+3//AOLc/wDgrT/9G5QAf8O0f2b/APopX7f/AP4tz/4K0/8A0blAB/w7R/Zv/wCilft//wDi3P8A4K0//RuUAH/DtH9m/wD6KV+3/wD+Lc/+CtP/ANG5QAf8O0f2b/8AopX7f/8A4tz/AOCtP/0blAB/wSa5/wCCUf8AwTHP/VgH7FvQAD/k2v4Z9gcD6dPegD7/AKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDP0nVtJ1/SdM17QdU0/WtE1rT7LVtG1nSb221HSdW0nUbaK807VNM1GzmntL/T9QtJYrqyvbWaW2uraSKe3mkidZGANCgAoAKACgAoAKACgAoAKACgD4A+Bn/FT/8ABQz9vnxTrf77Vvh/4J/ZH+C/g6K4+c6T4BbwZ48+L+pXukpLzZL4v8afE3V7TX7m0RU1pvBXhq2v7m6k8PWFvagF79r79vLTv2OY/FOs+IP2Vf2r/jB4A+HPwm1D42/F/wCLnwb8HfCQ/C/4VfDzTNR1qz1C61vxF8XPjf8ACGfx14nsLPw9rHiHU/h18F9P+IvxG0jwzbWOta34VsbfXfBw1LHB4ijicy+pYmf9lYT+2+DuHf7azOE6eXTzXjLNKmVZbTw2Hw0cXnOPwmAxH1WWe5rgMpxOU5XHH4GhiMc8c8VhKXVLA42phKFXLcPLOcwxWH4mxGEyHLamHebV4cNZdl+YYim5Y2tgsswmIzaGPWG4dw2PzLDVs6xmFzShgYTWBxlWP2pYeKPDmpvoUNnrWnvdeJdCuPFHh/TpLmO21bVvDlm2hpf61ZaTdNDqMun6bJ4i0GDVLkWvl6bc6xo1rqDQXN9ZRy92LwtfA4rFYLFU/ZYnB4ithcTS5oT9nXw9WdGtT56c5058lSnKPNCcoStzRnKLUjy8DjcLmWBweY4Gr7bB4/C4fG4StyVKftcLiqMa2Hq+zrQhVp+0pSjPkqwjUjflqQjNNH5C/EX40/G79nv/AIKb/tHaH8AP2Nfi5+1jpvxT/ZL/AGP/AIp/EjQ/hL8Sf2ZPh/H4C8f6f8Tv2w/hhp3jTxC37QPxx+ENvquo/E/wR4H8NeFY5NBk1W6TTfhNpkN0sMEGa5zqPWP+G3P26P8ApCx+1/8A+JM/8EvP/o6aAOg0L9tP9ry4+1/8JP8A8Ec/239I2eR9h/sL45f8EqfEP2jd532n7X/aH/BRrwt9i8nbB5Hk/bftHmTeZ9n8lPNAOg/4bK/aQ/6RG/t//wDhyv8Agkt/9NLoAP8Ahsr9pD/pEb+3/wD+HK/4JLf/AE0ugD8UP2i/+C7f7e37PH/BQLTv2YPBf/BLD48/tE6B4s8IaF4w1L4I2F38Br39qj4JtrNxLbrdeJPEH7JH7RH7Y/w2vvA2p2VnJ4l8M2/xY0L4OeKoNJnll1HxJrfhyG28aSgH6xfscePvEvx4/bS/ax+MPxJ+D/xB+B/jHw58A/2Ovht4Z+EHxbu/h3f+Pfhx4S12X48fE7xHdXD/AA18e/EXwlY3PxE8SeILOHX30XxPcXOp2PgDwNpviuCy8R+GZfDunAHgHxa/aI+MnwB/4LNeLvDumw/tgftS+DPG/wDwTs0z4geCf2SfhFafDe78H+D/ABfof7QVp4a8R+KPDI8V6z8Evhb4bvrvw7omqa7e+Lfj58Wbjxx4h1bUr74Y/CfxBfte+APg+vHkuZRjgfF+nWyzEY2WRZl4Q5lTzChRxOKxGWZPi8h8Yo5vhsHQq4t/WKuYY/AZIqXDvC2BxXFme1ubNKuV5jkPDuYZlleubYZ1cb4UyoYvC5fHM8N4wZJWwbrujSzrN8HmfgnjsozHMpuNX6qsvy/Ns7wss8zrE5fwXkeFp4bLqeKwHFfE0aed/qf+z7+018Gv2m/gx8Jvjt8LfErv4M+MkF3H4KtPFVhdeEfF0niPSY/Ef/CUeBNT8J68tpq1h458GXHhDxbZeK/DHky3+lz+GvEs5Eum6dc6hXsY7BrB1aKpYzA5lg8bgMrzjKs2yzEfWsrznI87y3C5vked5ZiOSnOrgM4yrG4PMcG61Kjio4fEU6eMw2HxcMRh4+bgMasdSruWFxmAxeCxuPyvNMrzGh9XzPKM4yvGV8vzXKMyw6qVI0sbl2Nw1fC1/ZVa2FqygsRgsViMFUw+KqfPngj/AIp3/gqT+0do2jfJpfxD/Yw/ZX+IHjCwh4tbfxx4W+M37VPgTSPFM0ScLrHjPwgbHw3fXk+JLzR/hr4Zs7ctHpU+OM7T7/oAKACgAoAguoZLi1ubeK6uLGSe3mhjvbUWzXVnJJG8aXVst5bXdqbi3ZhNCLq2uLYyKguLaaIPE2OIovEYfEYdVq2HdejVorEYeUYYig6lOcFWw85wqQhWpc3PSlOE4xqKDlCSTT1w9SFGvQrVKFLFQpVaVSeGxDrqhiIU5qUqFd4evh8QqVZL2dV0K9KuoSfsq9OolUX46RfsMfA/wV/wUW/Zd+In7Jfgnw98KvHHwa0P4xeJP24Pir4Ot5dN8WfH/wAGfFD4fzeHvAnw4/aY8SaVHZXvx7+KnxA+J0ml/tAReMPilqPibxf4dPw41jxVqs9pf/EDwvqGo93D2KjhMZxq8Hh8Pg+E6nDFLhh8P4F1KeRUOPHxHwzxDw5XyfLWq+CwmP4M4PXE1PPsVSrUOIMPl3HfBNHH08yyzP4ZhhebP6dTH5VklHH4mpjeLanE2TcQYPiDGqg86w3BmAwnEOXcRQbwlDDxwmQ8RZlQyfhnIcghSy/hWnSyvO48H4CnT4HxeTUf0j+DP7Rfwf8A2gbn4kQfCfxdp/iqL4ZeMP8AhDdevLG7sJba+uTpNhqEPiDQUgvp7u/8H6hdTapoWh+Kpba20nxJq3hzxRP4Wn1TQLS01y55zQ+L/wDgm3/yUf8A4Kw/9pP/AIk/+sm/sZ0AWf8AgkDaT2X7DkENwoWR/wBrb/gpjdqAysDBf/8ABTf9sG/tWypIBktp4nZSdyMSjgOGFAHpv/BQD4RfDz4lfAzWtb8d/sS6h/wUFufBmk+IJPB/7K8uofCWXwr4q8TaxawxWninV/Dnx18d+D/ha+r+F/sCxaP47uIde+J3gXSNX8Vt8JPD+pa7rWp6FffN8R4ek8DjarwOJxGIxGAxeAp5rhcNVxuN4Xw7y/NquMzrJ8NhMTQziGZYiHJgIS4X5uJ8ZWqYHKcFiMHlWLzrGHvZBUqPF0ML/adLLsPPMMqxGIp1IYdwzT2OYUqFLAYyOMlQyvH5dR+tzzjEZRxNjsLwniK+XYPMcznLNcu4fq0/l/8A4J7/ALXf7Mnwt/4Jk/sHalf/ABW+IlzoWs+HvDXwE8OH476ND4L+M1p4t8AeMZfhR8RdM+I/hXWvG/ic+AtI+BWu6Tqej+N7jXvHniS28FeG9E0/Rr/x14q8V3mgy6v+kcU1KuKzLB5lUxlHM6ec8OcH55hM6p4vDY6rn+BzfhTJ8wwfEWZZhg8JgsJmOeZ/QxFPNuI8wweGo4HHcQ4vNMXgqbws6UpfB8Pww2GpZzleHyqvw9HJuKOKstfC2IeIb4SpQ4izTEZfwphZ4mnRxFTKuH8sxOAy3IK1fDYOvXyCjldetlmX1pVMtpfpV8I/iZ/wtOX4nazpV54f1vwJo/xAttA+GPjLwtcf2joHjbwpF8M/htq+s65YeIbfUdR0fxN/ZnxC1nxz4OutT8Pyx6ZZ3vh258NXcA8RaPr0z/NnvHr9ABQB8AaV/wATj/gq34+GufOPh5+wF8IH+GIn6W7/ABe/aU+PCfHN9LEmctdr8DPgEuuta7Ci2/hxdQaUPpuwAw/28P8Agop8O/2KdY+F3w9v/En7NOj/ABR+Lek+OvFPhKP9rX9rTwn+x98FE8I/DqbwvaeKbjUvjD4g8C/FDUbjxVfaj4w8PaZ4N8F+F/hz4ivtanm1jU9dv/DnhjRNW8QDyquYVnjcdgsvw+HxtXKMsoZxm1CpmWFweOeGzCrmWDyTAZLg695Zrm2c43LMfKl9YqZdw3luWZZnGJz/AIoy/N6vB+Q513RwkIYLDY3FzxNGlmGZyyjL6tLBVMRh/rOHw0cdmWMzLERqQWByvLMLPC0q9XDwx+bVs0zXIsHgckxGAq55nOX91+xt+3z8EP2yv2dv2Y/jv4Z1Gz8KXn7TVt4xsPCHw+uPEGkeKtUXxr8Mm8WWfxb8P6Tr/haS+0fxT4f8Dar4K8QWq/EOwe38K6zZnwzdRTWeo+JvDmiz/U5rl0cvr4R0KmKq4LM8nyHiHKquYZbicozKpk3EeTYHPMp/tXJ8W54jJ82p4HH4elnGUValaWW5pHGZesXiY0Fi5+Dl+Nniv7Rw2JhhaWY5LmuY5FnFHA42OY5fDM8sxNTD16uV5nGhhlmmT4+EKWZ5Fmjw2FqZlkmMy7H1cBg61erg6eD4n/4lf/BVz4Ff2J8v/Cb/ALAH7V//AAszyP8Alr/wrD9pb9ib/hRv9qbcbfs//C4vj7/YXn7t32jxJ9k2bL7f5Z6B9/0AFABQAUAFABQAUAFABQAUAfAH7Gn/ACch/wAFdP8As/8A+Gn/AK6X/wCCWdAH3/QB+S//AAW/8WfE34c/8E1vjX8U/hR8bPi78EvE/wANvEPwe8Tya78FruxsPFnifQ5vjD4M8Oaz4Gu9Ri8JeI/GdpomtWevNd3cXwtvvDHxB1S907TNAtfE0vhnUfFHhTVeTD4qngeNvCjEYuFfGZZW8V/DXKs3yeGFxmNw+aZZmnG2R4TG0q+XZZSlmebTWFdanRyWhKvgs19vUwGZ5PmtGpDBOsVQq4rhHxOw+FlQw+Yvwo8VcXlGa1sXhsBVybNsq4A4hzfL8ywuY4/EUctyytDEYGFCebY+yynDVq+a5fjMsznDZfnuG+l/gX+2/wCCPjX8b/GP7Ous/CH48fAT4r6B8P8ATPjJ4T8K/Hrwb4X8N3HxY+BmreIZvDFj8XPh9L4R8e+PI7HS4NbWz03xP8O/iX/wg3x48A32q6JY/E74ReGb+9itq9LDYeeJwecV1PD08bw5mWV5VxLk31vC4nH5LiM6wOOxmSYieKy+vjclzrKc4lk/EGBy7P8AhfNs5yGvmWQZ7g1mSnQwzrcdbF0qOKymi44h4TP8vxuY8PZrPCYrCYPN6WWYqhh81wkcLmFHCZxk+b5XSxuUY/HZDxJleU55Ry3OMqxay+cHj1R+krb4meFNQ8V+BfCuj3n9uf8ACw/h/wCLfiZ4V8R6JcaZqXhTUPCnhTU/hlp1xeQaxa6jJ9r/ALZ/4Wh4ev8Aw/cadb3mmahpkep3cmo2+zT47rA6jv6ACgD4A+I//KVz9i7/ALMA/wCCnP8A60t/wR7oA+/6ACgAoA/nr1r/AIKewfHf9sbxx8Nrf9qbxj+xd+y18D/2j9N/Zc0z4m+CP2bNY+Ims/tKftO6ZrM/hjxZ4E+I37SPxM/Z/wDjB+y5+yn8Hk8Z3dp8NvBfhnxR/ZPx7+NPi6xvfEvgj4ieCPCD+GrPxFHBr/tt8O57VnHGri6pmlPgLhCcJ5fgeIsLl2YVK9DG4/PK0sPXz7POIsv4Y4jeT+HPCOPy7ijLcjx2TZ3m+KxOc5zkmQYauLo/2JQx+Uw58HVyTA5XmvG3FCUcTiuHMPn+VYCeT4fKsmisSsBleXT4kynF8S+IHFeWV+FKee4PMODstoSnw9x3msP3V8ffEzwp8OvCnxI8Vaxef2h/wq/4f6n8TPFXhzRLjTLrxXD4UsNM8U6jbXkOj3Wo2Pl/29/wh3iKx8PXGo3Fjpmpanpep2keop9h1KSKyTv6ACgAoAKACgD4A/4JNf8AKKL/AIJjf9mAfsWf+s1/DOgD7/oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+QfGXg79r+9/agtPE3gj4ofD/RPgePhBrukaZo3iDwHr3iey0bx7J4s8DXN63inwzpPxb+Ht/4n8Qa9p9pdXPg7x1b6zJovhXw/YeKPBs3gfS9Y1eXxr4hAPo74eeCdJ+Gfw+8C/DfQbjULvRPAHg/wv4J0a61aW2n1a50nwtodjoWnXGpz2dnYWk2oT2ljFLey2tlaW0ly0r29nBEVgAB2FABQAUAFABQAUAFABQAUAFAHwR8ZLO8/Zp/aUk/bKitLq7+DnxB+Fvhr4OftZHT7ae7ufh5pvw08Q+OPFXwU/aJk061jmubjwn4Ll+InxG8EfGu70+1m1LT/AAZ4i8CfEbXbi38AfC3xJcQgHwR/wUk/YI/aI/4KFy/GMfDx/wBkP9ob9nb46fse2Pw+/Z+k+P8A8UviD/wi37L/AMctQt/i7dS/tQ/CL4a+C/gT8Yfh18X/ABZ480jxj4B0/wAOfGK68VeC/iZ8K9E0TWR8NPEF/wCG9f8AFHhfWvncVlOJxuE4goT+r4fM8Vn3DWZ5HxRSrV6uaYDh3KKeX18x4Ho4KdGlTyXCZ3mOEzHEZpxFlGOWNzvD51hcDxblOdZdwfwXgKf0GCzXDYLMOEcVBV5Zfl9HO8FxTw/KnB5bnlbNMyy2eB4pxsvrKefVuG8upVI5bwXmdDD5S8ZgY4jLOI8kzHiHO87w/wBe+G/hV4P/AGaD8K/2xv2pfHem/C7x14D/AGefDvwD8e+DfCXxX+JHxH+F+reLYrnw7ovgzS/hRPqHhT4beKfHupeI5LK/0zQfg5Y/Ch/+E8+JHiDw3rng/wCHcfxe07/hI9a/QuKs1w2fcTZ7nuFhXpU87zPF5xLD4iNNVMJiczrVcfjMFGdOrVjiaGBxWKrYTDY5qhUx2Go0cdWwGBrV6mX0vguF8rxGR8OZLkeKnRq1Mmy7CZRCvQlUlTxWHyynLBYTGyhUpUpYetjsLSo4vE4JOtTwOJq1sDSx2NpUIZhW9q/ZR+G3jiPXvjh+058YNAuPCnxT/aX8ReF7m18B389nc6r8I/gL8NNHvfD/AMDvhHrV3p1zdafc+JrZNY8a/Fz4hQ2d1qFloPxX+K/xC8FaH4h1zwjoHhnXJfnz3T7HoAKACgAoAzdN0bRtGOonR9J03Szq+pXOs6sdNsLSyOp6zdpDHd6tqJtoYje6ldJBClzf3Jku5kihWWd1jSgD4e+Nmnaj+zr+0hZftoWGn32pfCzxd8LdD+CH7WtvpNnc6hqfg7wf8P8AxH458bfBT9oKHSrKK4vdU8P/AAs1j4hfEvwp8V7bS7WfVbfwH4+034j38q+F/hdqsEoB5H8Vvg9+0hq/7Yngv9v/APYpl/Zj+N+jeOf2Obr9nWXS/iv8cPHvw18J6bpF98V9N+Lvgn4y+BPGfwr+A37RNp8YNI1iK8vbK98HPH8P7VrG00vUtH+JN6msTrp3HllHF4OXHmBWKpYLDcbVvD3FUs7hhXmeM4fxfBuC8SMtnU/1dqYnK8Pn1KvT44o5hSoy4hylzq5dUyypVpU8Ws0pa4yOExUeFcZVjiKuK4TlxzSp5VCdPCYbPMJxtLw6r4pVM9cMdVyHEZXU8OsJhsPKOQ51TxlPPMVjakMPPJqWAzHK+Hf7HXwM/YI+Fn7LnxK+Knx/vYL39lq4+MWo+NfG+sWM2jeE/i/8Qf2k9U+I+u/EN/Cnwj0zVNXHhvxn43+LXxLnuvhx4W8Cr4m8feI9PHh74Q34+IHiKHwV4gsfYxNXCexyfLstoYjDZRw7w3wtwhkeHxeJhjMbTyLhHh3LeGsneYYynhsHSxeZVsDlWHxGZ4rD4PCYXEZjVxdbC4DCYaVLCR8/D08XPG8Q5vmVWjXzXifibiPirNquHhVhh443Ps4xmYxwOFVarWrPBZNhKuFyTLZVqkq8stwOEliJOu6rl9M/sq/Dvxvc+Lfjl+1X8XfD154R+JX7SGoeCdM0HwDqr20mu/Cn9nD4S23iez+Bnww8Ty2Vxc2beMJtR8cfE34z+PLG1nurbwr4++LXin4b2Gsa3pHhbS/E97xnWfZdABQAUAFAFPUbWe+06/srXUrzSLi7s7q1t9X06PTpNR0ueeCWKLUrCLVtP1TS5Lyxd1ubWPU9Nv8ATmnjiW+0+6tTPbPhiqNTEYXE4eliq+Cq1qFajSxuFjhZ4rCVKlOcIYrDQxuGxmElXw8mq1GOLwuJwrqRgsRhq1H2lKW2HqQo4ihWqYeji6dKtSqVMLiHiI4fEwhNSlh68sLiMNiY0a8V7Oq8PiKGIUJN0cRSqpVV+f3wQ/YJ8afBPXrG+l/4KH/tvfFLwx/wn+ofE3xZ4A+IkH7D+m6X8SPGF9q41xrv4g+P/hJ+xD8K/jZrOnwajBpkMeiWXxW07Rrjwho+ifCfU7G8+DdtJ8PJPQwVengqGX4VYTDYjDZTlOJyjKsNiHifq+Cp4rDZhRxGPdChiqFPMc2xOIzTMs8x2ZZxHH4nM+LsdjeN83njOMq1TPXw18O61bH4qOIr0MVmeZ080zDFU3RqV8TVhWwrjhL4qjiY4fLaWBweFyHL8vwkaGFyThnDZfw5w7DLcoy/KsLR+3fCfgDwX4DufGd14O8O6f4ek8f+ML7x/wCMF0xJILbWfGmp6Toej6r4jlsxKbW11DV7TQNNm1d7CG3j1TVlvvEGpR3HiDUtZ1S45joPzw/4Jt/8lH/4Kw/9pP8A4k/+sm/sZ0AdB/wSc/5Mpsv+zn/+Ch//AK8W/awoA+mfjj8FPiX8W7vw1ceAf2wv2h/2ZINEg1OHVdP+B3hn9kTXLTxm99LZPbXPiWX9pD9lP9oTULKfRktp4NMHg2+8MwSRX962swalcxaXcW+VOjBYudbFSq43B1aWFo1MpqV6+EwkoUauLniZQx2U1ctzzDVcypYiGGxVfC5xRr4elhsJWyergMesVjausqkXh6dGNGlCrCrXqPGR9rLEVY1IYeNOjUp1atTB+ywsqM6tDkwsas54nERxdXEUY4WnS1PDf7NnwR8KfDL4c/CPS/A1vP4M+FfifQPHHgeDWtW1/wAQa/pfj7w/4pn8ZW3j658Za5quoeLNZ8a6t4nvNT1vxb4s1rWr3XvGd5rXihfGeoava+IPElvd9uIxE8Q6HNCjSpYTAZZlWCw2GoUsNhMDlWT5dhcpyjLcFhqMIUsNgssy3BYTAYLD04qFHC4ejSV+VyfJRpeyljKs6kq+KzHM83zvM8XOnhqVXH51nubY7O88zOtRwdDC4OhXzTNcwxmYV6GCw2GwNGtiJ0sFhMPhYUsPH3Kuc2CgAoA+MP2k/AHjXwz8T/hJ+1/8JfDmoeMPF/we0Xxp8PPip8ONDSOTxD8Vv2bviFe+GNb8Y6T4Rs5JLeDVvid8NPFngjwl8SPhpYXk4k1ixtPiT8L9Eks9V+In9qxgHknibw34d/bd1f4HftqfsC/tb/D7wv8AEr4S2PxO+GMPjDVPh1dfHH4T+KPAfj6XwxL8Tfgf8ePgvp/xR+B/j7w94v8ACvjDwL4M8SWmnxfEX4dfE34a+PPDU+geMtKvdH1Dxd4KucMP9dwGOzDE4DEYeOGz3L8BlfEeX4zC1MVRx9DJsTmWP4czLAVKWMwlXK8+4fxmaZth8Dj3LGZbXyHP+KsqzPJMXjsTkGd5ZtiHhcbllDAYyhOVfLM0jnOQZlhqtKjjMrxlenQwWd4STrYXFU8ZkvEmV0KOFzfLZQo1pY7AcPZvgsww2LyqMa3X/Er4c/s9/CXSfgt+0X+2h8RfB+u/Fb4N6ve3kXxYuvDMfhu38d+NPFcviGTTPh14B+Ez3/xD8S6zpWkeLfEcF3+zn8JNF1jx38X/AA54i0rwjY+GvGfivxxqHjTWPEXfiZYSVRRwNDEUMJSpUaNCOMxVPG4+oqVNRniswxlHB4ChicfjavPi8ZPCYHA5fCvVnQyrK8vyqng8so8dGOI5q9XFVaVWvXq80nh6FTC4WFGjSpYTBUqGDlicTChKlgcNhoYyrRlH+0sxWMzrF0/7Rx2OqS7D9nD4d+N/EHxO+K/7Xfxg8PXnhHxv8XdD8HfD/wCGHw11d7aTXfg/+zn4Fu/EWt+FPDniwWdxd6dbfFD4h+K/F3if4i/FODSbq5tdIF54B+Fs+qa3/wAK6svFF3zmx9l0AFABQAUAFABQAUAFABQAUAfAH7Gn/JyH/BXT/s//AOGn/rpf/glnQB9/0AfGH/BQz9mTxR+2P+xh8cv2cvBPiTQvC3jDx5pHhu78J6v4oj1E+GG8S+CfHXhn4g6Ho/iK60m11DU9H0TxJqPha18Pat4i03Sdc1Dw3Yajc+IrLwr4iudPj8N3nM1icNnXBee4SnQxNfhDj7gXjaOBxGIqYSjmNPhPirLM8rZa8bTwuNngp42jgp0aWKWDxSpVpwc8PKHNJaOlhcZlvE2SY2vXwmE4p4O434LxWYYXC08bicsw/GXCWc8LVc3oZfWxmX08zrZTDNXmNPLKmYYCGYToLATzTBRqvHx8F0f9jL4wftE/Gn4k/tDftrx/D34aa7rf7NeufslfDf4S/swfFvx38QNP8F/Dvxl430P4hfE74g638e/GXwV+AviPxV4s8f694X8F6Pa/D1fhPpvw88PeE/CuoaX4tm+JFj441zSdN9LArC5XguJFh6+JxWP4uxXCdTNZ1sPRwuEyzLeC6PF1LIMmy6FPE4mrmFSvjOM+Ic5zfO8W8K66xWSZDgskwsMhxmf5xxY9YnM8Rw1TrU6WHy3hSXFGMwVKOKq4qrmed8UUuGsJiM4xFOWFwtLK1lGV8PrKMtwNKWYVKqzLPMyxOZxji8JlOE+yvgP+zt4O+BHhTwbpFjf+IPFfiXwx8P8Aw74Cl8XeKPFXjrxDiy0vTNFttYTwToHjHxj4tsPhX4f8UX+haXqeq+DfAkmm+H5f7K8K2N7DfW/hrwy1vzHSe/0AFAHwB8R/+Urn7F3/AGYB/wAFOf8A1pb/AII90Aff9ABQAUAfhf4i/wCCa/7Rt74A+OH7DGn3vwA1b9hf48ftT6r+0pffE7xF4q8fR/tLfCvw54z+Pun/ALTHxK+Cfhv4NL8INZ+H/wAQ7/U/idY6vpnw6+O+r/HbwhrPw78OeLLTXb34V+MPEPgDTrTxFfDrWBoeGFHN51o1PBvHcP4jhPGZXKEsTxJgeCs0ebcBZfncq0MK+GJZbOrQyPi7GZVPOHxlwtlOJy6OGyLF8WZpj8tXEMVmFTxLxmWpLFeKfDebZTntHGyqUcPlOd8WcI/6hccZ9hKuGqVqmb4fNMk9vxFlWSSo5PSyzivHVcF9frcOYLCYaf6Jaf8AsXfDC3+NHxp+Lmra58QPENt8af8AhCLvxH4D1L4jfEeHwpLqXhqDxNYaxYeIdM07xnZ6V8Rvh/4l0rVNL0yD4YfEXSPEPhLw1plrr3hnQreP4f66ngmxgZ9fUAFABQAUAFAHwB/wSa/5RRf8Exv+zAP2LP8A1mv4Z0Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB8La9/wTn/AGZLvXNY8Q/D3/hdX7PN74i1K91nxLpv7Lv7S37Qn7PHgXxFrWp3Mt7q/iDWvhT8JfiR4W+F974q1q+k+3az42bwYPG2p3AYX/iOaCa9hlAOw+FP7Df7OPwk8b6d8UrXQfHHxN+K2jQ3tv4f+LX7Qvxj+MH7RHxH8JQajbSWWp2/w98S/G7xx47uPhdZ6rZSPZatp3w1TwzpuqWrzR6nZ3LT3TuAfXNABQAUAFABQAUAFAHw14j/AOCdf7MupeIdc8U+A0+M37PmreJ9Uvtb8Vwfsu/tJftA/s7+EPFOuapdS32s+IfEnwx+EfxH8K/DLWPFmt6hIdR1fxzeeDZPHV/dmdrnxM8N7q0NwAeOfGH/AIJAfse/G34VePPAnjdvjb4n8eeJ9AutP8HftFfEf9ov48fF/wCPvwS8SxyR3mgeOfgN47+LHxD8YXXwb1vQNUtbG+ks/htH4b0LxLbRahofjPS9Y0TW/E1jdgH41f8ABNvwz/wVh/4Jhaj8UtU/4KP/ABr/AGv/ANrf9m/4d/FDxV8MdT8X+EvEekfG2L4ceD9F03R9d8HfHPxX8L/GXwj8Z/tE+Ovgp4r8J+JNM1u58afAr40ar4h+FmuWvifwD8SvgXJpnhLX/GkAB/VB8L/in8Mvjd4A8MfFX4OfEDwh8T/hz4y06PVvCfjvwH4i0nxP4T8QabI8kQutJ1zRru8sLxI5opbe4WKdpLa7intLpIrqKaKgDvaACgAoAKACgAoA/MD/AIJt/wDJR/8AgrD/ANpP/iT/AOsm/sZ0AdB/wSc/5Mpsv+zn/wDgof8A+vFv2sKAP0foAKACgAoAa7pGjySOqJGrO7uwVERQxZ3ZmAVVCsWYnAAYlsAmgD8fPE/xM+I//BUfxJ4i+D/7MnjbxJ8MP2DvDWral4W+PP7YXgjU7nRfG/7Tur6Xe3WmeKvgD+xz4mtHju9D+G9vKk2j/Fr9rXQLhmup01L4dfs9Xkuvp4g+KmigH01ff8Eyf2BZ9P8ADNhoX7MvgX4bzeEfDOi+C9B8Q/BO48UfAvxzbeEfD9mljofhu7+IXwX1/wABeNdY0fTLRXgtbDWfEF7bpHc6jlC2oam0oB3fwj/YY/ZK+B3jCD4j+AfgxokvxLs7a5sdO+LHxA1nxd8Xfi9pGm3kTwXulaH8Vvi94h8c+PtC0i+gYW99pGkeI7TTLu2itLa6tJYLWzjQA+sKACgAoAKACgAoAKACgAoAKACgD8YfhB8Afi18Vv2u/wDgrH4i8B/tz/tP/s1aTZftv/CnRbnwJ8E/CP7D2u+FNW1K3/4JVf8ABMy+m8X6jeftGfsYftAeM4vEF/balZ6Nd2uleL9P8IppmiaNLYeFbTXJvEms6gAfT/8Awxr+0h/0ly/b/wD/AA2v/BJb/wClaUAH/DGv7SH/AEly/b//APDa/wDBJb/6VpQAf8Ma/tIf9Jcv2/8A/wANr/wSW/8ApWlAB/wxr+0h/wBJcv2//wDw2v8AwSW/+laUAH/DGv7SH/SXL9v/AP8ADa/8Elv/AKVpQAf8Ma/tIf8ASXL9v/8A8Nr/AMElv/pWlAHxB4+/ZO+P0H/BTH9kjw7L/wAFRP237zVtU/Yg/wCCiWs2Pju5+H3/AATDXxZ4c03Qv2g/+CVdjqvhHRbO0/4Ju2vgyfw/43ufEekaz4nufEPhDWvFtrqfgvwdF4I8VeGNEu/iLo2vgH2//wAMa/tIf9Jcv2//APw2v/BJb/6VpQAf8Ma/tIf9Jcv2/wD/AMNr/wAElv8A6VpQAf8ADGv7SH/SXL9v/wD8Nr/wSW/+laUAH/DGv7SH/SXL9v8A/wDDa/8ABJb/AOlaUAH/AAxr+0h/0ly/b/8A/Da/8Elv/pWlAB/wxr+0h/0ly/b/AP8Aw2v/AASW/wDpWlAB/wAMa/tIf9Jcv2//APw2v/BJb/6VpQAf8Ma/tIf9Jcv2/wD/AMNr/wAElv8A6VpQAf8ADGv7SH/SXL9v/wD8Nr/wSW/+laUAH/DGv7SH/SXL9v8A/wDDa/8ABJb/AOlaUAH/AASa/wCUUf8AwTH7f8YAfsW8DOP+Ta/hn6kn8zn1JNAH3/QAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfmr8UP2DfEXgXx/4t/aL/AOCevxI0r9l745eLdRk8R/Ez4aatol1r37Hn7TGuhY2nuvjh8HtKn0+bwf4/1v7NBaXH7Q3wZuvDnxXQSNd+OoviNpdtb+E2AOu+AP7eegeOviNYfs1ftK/DnW/2SP2t5bC+vbD4LfEPV7LVfB/xcsNJwdW8V/ss/Gmzt7Dwj+0H4UtYWj1DUNN0aLSPiz4R0+RZPif8KfCUgAYA+/KACgAoAKACgD8wP+Cbf/JR/wDgrD/2k/8AiT/6yb+xnQB0H/BJz/kymy/7Of8A+Ch//rxb9rCgD9H6ACgAoAo6pqmmaHpmo61rWo2OkaRpFjeapq2rapeW9hpmmaZYW8t1f6jqN/dyxW1jY2NtDLc3l5cyx29tbxyzTyrEjyUAfklrcPxF/wCCrstvpeh6p4i+Fn/BMqeWc+IPEumXeu+E/i//AMFCdMheNE0TwdcQpp2tfC79irxC7XcGr+N0ntPH37T3hpGj8AR6H+zrrulfEXxiAfq94X8L+GPA/hnw/wCC/BXh3RPCXhLwpo2meHPC3hXw1pNhonhzw54e0ayg07R9C0HRdMt7XT9I0jSrG2t7LTdNsLeGys7OGC2toI4YkSgDdoAKACgAoAKACgAoAKACgAoAKACgAoA+AP2NP+TkP+Cun/Z//wANP/XS/wDwSzoA+/6APzE/4LDfHb4+fswfsAfFf9oH9nn4reD/AIQ+Kvhl4g+FmreJPFnjD4eaX48Vvh9q3xP8MeFfFem6APEPibSfC3g3Wp7fXbe6k8beLNB8caLpegWmvWEfgtNb1HSPGekctHGYXCcX+GtPOMTRo8NZr4kcB8P8TQq16WA9pk2d8W5Pl2OnWzeu6lPLcuo4Gti3mk6dGljp4afPgM7ynEUfrzvEYfF4jhjxDeVYbEYjiHA+GviPnPCrw9GeLlS4jyHgzOs7yuayqlTlUzfETq5f7HLcD7WND+1amCxOYYTNcuo4vh3FfS/wI/bT/Zk/aX8aeOfh38HfiNda343+H+k6F4n1zwp4l8AfE74ba5qfgHxPdajZ+Evix4BsPif4M8HTfFb4M+MrjS72PwZ8bvhkvif4ReLPKD+GPG2oxywO/o08LiquCxWO+rV6VPLs0jkeb4XFUamDzbIc7nl+HzOnk3EuR4uNHN+Gs0rYGusRQy7PcDgcZWVHMKdGjOtgMzhS43jMIsXhcHDFUK8sflf9t5VisLWp4vK88yX69Xy6Wb8PZzhZVsq4iy2ni6Hsa2OyXGY3C0Pb5fUr1oUswy2db6EufFOgWnivRfBFxf8Al+JfEHh/xP4p0jTPst632vQPCOp+D9I8R3/21LZ7C3/s6/8AHHhi3+y3V1Fe3f8AaPnafbXFvaapNBgdJ0FABQB8AfEf/lK5+xd/2YB/wU5/9aW/4I90Aff9ABQAUAfhPrf/AAUn/aMn/bQ+LPwF8I6l+zLFrvws/ai+FPwR0X9gzxT4L+Jtn+2v8b/gR42t/hinif8AbK+HvxVl+MmkeE9N+FfgvT/G3ir4mXsOl/s3+P8AwVZeAvhn4h0Pxn8afDPijWp7zQzgxw4hlha2Lm62Gr5/x5k3EtPL4rDYvwsw3C1LOf7IzXjCGIqY6eaYXi7D4PhfP8iqzw/DGDzbDeIXCvCfDWOznivBKGZxxPUhk0sfhaDeExNHhnhfN+GcTmaniMF4i55nMFjMbw7wxDAQU8JLASp5pwpjMXGtnOL4fzvh/iLjDjXKMk8OsLi86w/7ceLPFOgeBfCnifxv4qv/AOy/DXg/w/rXinxHqf2W9vf7O0DQNMu9W1i/+xadbXd/efY7Cyubj7LY2txez+X5NpbTXDxxsFnQUAFABQAUAFAHwB/wSa/5RRf8Exv+zAP2LP8A1mv4Z0Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQBn6Tq2k6/pOma9oOqafrWia1p9lq2jazpN7bajpOraTqNtFeadqmmajZzT2l/p+oWksV1ZXtrNLbXVtJFPbzSROsjAGhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHivx9/Zz+Bv7Unw6vPhV8f/AIbeH/iT4Mub6x1i10/WormDUvD/AIj0uR5tF8X+C/Eul3Nh4j8C+NNAnc3Xh7xr4Q1bSPFehXf+laLrNpcFpSAfAQ1X9tX/AIJ5IyeJl+Iv/BQX9jbTHXb4v0+zPiL/AIKAfs9+HjJKgHivw5ptpbQftq/Dzw5CkRl8SeF7fS/2otP0nzZtV8KfGfXIr7xEQD9Dvgj8d/gv+0r8N9D+LvwD+JnhL4q/DvxAJk03xX4O1e31TTxe2rCLUdF1OKNheaD4j0W4zY+IfC+uW9j4j8P6ok+la9pVlqcNxaKAes0AFAHP+LPEUHhDwn4n8W3Om6xrNv4X8P614iuNI8O2B1PxDqsGjaZealLpuhaYJoTqOsX6WbW2l2HnRG7vpbe285C5egD8Nf8AgkJ+2z+zJ8e/j/8A8FHPAfwO+KGi/FbUviT+2H8QP2ndC1HwXIdS0Oy+CGq/s5fsT+EfC3i/xDqDGI6DN408Syaronhfw/qMMXiK9vvCvxChudNtZfCniFIgD7L/AOCTn/JlNl/2c/8A8FD/AP14t+1hQB+j9ABQBzXjLxn4Q+HPhHxN4+8f+J9C8GeCvB2ian4l8W+LvE+q2OieHPDfh3R7Oe+1bW9c1jUZ7ey0zTNNs7ea6vb27njt4IEeSWRVGSAfnDp3g7xJ/wAFLZdE8cfFvRdU8J/sDxz6Z4l+GXwE12zuNM8T/tlwL5OpeGvij+0pol0VvNB/Z1ule2134e/sx63aW+s/EVF03xX+0rYQaFJD8CowD6i+EP7X/wADPjj4+1/4a/CyL4yaxd+GJfFdnP4z1D9lf9qfwf8AAjVZPBPiRvCXiCHwN+0b4z+C/h34D/EQW2twz2WljwB8R9eTXoLTUdS8MnUtJsNRvojAf8KeVUM5wrSwGKy/Kc2wk8XJZficbledYWjjcozDA4DMHhsfjcJmGCr4fMMNXwuGq055diMNmHMsFXo4iTxq/s/GfUK7jPExxVfAV44Occxp4PH4WGIeOwGY4jL5YrD5ZjcurYXE5dmmDzCrQxOW53Qr8P5jToZ7TqZevqGgQUAFABQAUAFABQAUAFABQAUAFABQAUAfAH7Gn/JyH/BXT/s//wCGn/rpf/glnQB9/wBAHwH/AMFRfgB8Tf2ov2Bf2hfgl8HNMsNc+I/iXSfBus+E/D2o6xYaEniW+8B/Ezwd8Q5/C9hrGrS22jafrniax8K3Oh+G7jxFqGk+GB4hvtLXxP4k0Lw+dT8Q23Kp1cFxD4fZ9HDVsbQ4T8TfDfjDMMJhZYaONxGU8M8Z5RnGaU8AsZicJhamM+pYStPD0cTi8NSq1EqTxMJyTLnhoZjk3GOQyxeHwFTirgDxF4MwmYY2OLll+Ax/GHA3EHDGXY/M/qOFx2OjlmCxmaUMTmc8BgcdmFPAQxE8Dl2NxcaWDqeDaV8A/wBoz9qn9qX4g/tX+L/BXxJ/YPg0r9kHxN+yR8INJ8R+J/gr4v8A2iL7XPH3xO8M/E3xx8VfFSfA74sfGT4UeHvBPh//AIQ7wz4U+HWmaP8AE6++Kl/Lq3xR1+K/+Fuq23gjxBfelllGllWE4xrzxWGxWO40xHANKGGwtHEqOT5LwDT8RJYb+0sTisPh1XzrO808Qc0qPCZdHEZZlmQ5bk2Jec4vOM7zrJMp4sznVzSvwdhIYetQwXCdbjbM8RisR9UhPMc54rw3BuXYShliw2JxWIeT5ZlnDmKqZlLMfqVXHZ3jcHGjlcsNkmCzjFfa37Ov7PepfCLwp8LP+E68feIPiB41+H/wg0P4W6X9ubwlF4U8D6bLpngj/hNdB8B/8Iz8PvAeq614f1rVfAfhX7HqnxI/4SLxbBpnh7Sfsupadd6h4v8A7R5zqPp+gAoA+APiP/ylc/Yu/wCzAP8Agpz/AOtLf8Ee6APv+gAoAKAP5zfih+xd+1P8Qf2l/GnifxX+y/rXif8AaW0D9tbw98Zv2QP+Cpfh34vfB7R/B/wI/ZTi1rw29x+z/wCLPDmo/FHTP2hdP8L6R8KD8SfhN4r/AGbPB3wW8a/AD4x+PfGmqfFbxD4r8N+L/G3jT4raGuCZVssnwnVxVX+xsfk+Y5/gvEvGVaVPF5f4r8I4/ivH8RTw1LCYDnrYzG5jw/jMn4NyCPE8cpxfhjmuQ0M34Z4hzXK8pyt5vvxVUjmGC4nwFG+aZRmnCmULgvKYXw1Tgvj/AA3DGCymOdYj2s8FRw/1HjrK6XiPmWfZPi8yzTijh2vlvBmeZXicLlGB4epfqof2SvGOt/Gj9orxf43+P3xA134XfHDw/wCAfDtx8O7aPwLb+b4O0mD4iad4q+EWtXV/8O9Tv9G+H40/xVMvhfWvhfrvgjx1J/wk/jK68Tard+PbS0+J+oswPt6gAoAKACgAoA+AP+CTX/KKL/gmN/2YB+xZ/wCs1/DOgD7/AKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPkHxl4O/a/vf2oLTxN4I+KHw/wBE+B4+EGu6RpmjeIPAeveJ7LRvHsnizwNc3reKfDOk/Fv4e3/ifxBr2n2l1c+DvHVvrMmi+FfD9h4o8GzeB9L1jV5fGviEA+jvh54J0n4Z/D7wL8N9BuNQu9E8AeD/AAv4J0a61aW2n1a50nwtodjoWnXGpz2dnYWk2oT2ljFLey2tlaW0ly0r29nBEVgAB2FABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcf4/8AiH8PfhN4L8QfEf4q+O/B/wANfAHhSyGpeKfHfj/xRofg/wAF+GtN8+G2GoeIPFHiK/03RtFsjcTwW4utRvoIPPmhh80yyIrTzRVTC0XKPtcbjsuyvBUrr2mLzTNcfhsrynLcLC/NiMdmmY4vC5dl2DpKeJxmPxGGwWFp1cTVp05a0aFfESnDD0ateVOhisVUjRpzqShhcHhq2LxmJnGCk40MJhcPXxWKrS/d0MNSrV6040qdSodbHJHLGksTpLFIiyRyRsrxyRuoZHR1Yq6OuGVlJVlIIYj5jpKMoSlCcZRlCTjKMk4yjKLcXGUXrGScWmnqmmndpt8tCtRxNGjicNWpYjD16VOtQr0KkKtGtRqwU6VajVpylCpSqwanTqQlKE4NSjJp3f56/G39guK/+JevftN/sdfEy4/ZI/ao1tYJ/GXizw94eg8SfA/9oh9PjmTTtI/av+BTX2jaL8UfLhc6fYfFDw/qfhL4++F7CQ2vhn4qQaLFJ4dnk1Kfwa/b0uLT4i+Gf2Z/24fhqv7Jv7TPiO6fRPAQvddk8Rfs1ftL6rZwPJc3n7LPx0ubDR7DxRq15bxjVZfgl490/wAJfHzQLR7nzfAmtaDYSeM7gA/RmgD54+Ofx7k+Ft34X8AeAvBV18Xfjx8R7fWrj4ZfCHTNbsvDq32leH5dLtvFHxD+IHi2+tr+1+HPwh8CT67oKeNvHlxpmsahHeaz4f8ACPgXwl4w+J3iHwZ4A1IA/Bj/AIJdf8EQP2j/ANhbxh+3N450X9rBP2cdZ/aQ/aKv/F+m6B+z58Jvgt428KP8KLSyn8U+BvD9lrnx68B/ETxFZaP4G8RfEb4geEtH0pNP8P389lpdvr2uDUH1DTUtQD9HfhB4T/aA/wCCbvgA+GPGUvhT9oj9lfS/FXxO8feKPiP8PfA/iTwV+0B8H7v4o/Ezxn8XPiL498e/Difxp490D41eA4vF3jTxT4i8S6n8KZfBPjHwR4fms7Dwp8D/ABlpdjfX9oAfqBo+saR4h0jSvEHh/VdO1zQ9b06x1jRNb0e+tdS0jV9I1K1ivNN1XStSspp7TUNO1G0liu7G+tJpbW6tZIri3mkhdZGAOM+LXxb+GPwF+GXjX4yfGXxx4f8Ah18M/h7od14j8Z+NvFF/Hp+h6Fo9oVRp7mdyZJri5naGx0zTbSOfVNW1W5sdH0izu9Vu7OzlAPzH8GfCT4of8FLfF3hv46ftbeBtf+GP7GnhPXdK8Yfs3fsS+NbGXTfFfxl1bSLyHUvCv7Qn7bnhm4WRIoLK+tbTxL8Gv2WtQM+l+E5F0rx38c7bUviXFo/gbwuAfrVrGlw63o+raLcXOoWcGr6bfaXPeaTqF3perWsN9a3FrJc6ZqllLDeaZqECTtLZahaSx3dncrDc28qTxrJXHmGAwuaZfjsrx1OVXBZjg8TgMZShWr4edTC4uhVw+IpwxGGq0cRh5TpVZqNbD1adelKSqUasKsYzNsNXqYTE4fFUVSdXDVqVekq+HoYqg6lGoqkFWwuKp1sPiaTlFe0w+IpVKFaDdOtTnTcov8qP2ePhjrf7D/7Vk/7JnwF8e/En4s/srn9k3Xfiz4f/AGcPHPxEi+J3jr9lHxR4B8aeBfAPwv8AB3wx+J/xS8Sn4ht8Lf2ltIvPH9l4G8EfGz4ha34b8I+K/g54qj+GPizwv8P4vE/haw9zAY7F5xlvGEs4rRzHE8PZrwpTyziCVCFPMsZU4qnx9mmd8OZ7icMqeGzfEZDRy3IcflGYVsOuIcFk+aUsDxJmOZ4PFcJVKHPmmGjQq5Hm+FnXoYriLN+Lv7dy+tVx+Jo55Wo4Ph/H43jbB4zMMRi/qWPyzNMXh8DxRlGErUcNnuYca4DifDYGjj8v4qxeL+uv2Ufj/wDEb4++BbPxL4++BPjD4XXdzqHxHinv9QuvBw8L2Vz4W+KPiPwfa+CDp83jmb4mx+MNEstMGn+KbvxL8OfC2k3PiTRfFFzZ22mWVx4d0mbzyj6voAKACgAoAKACgAoAKACgAoAKACgAoA/GH4QeE/22de/a7/4Kx3n7N37Qf7MHwr8FR/tv/Cm21Xw98bP2O/i78evFd74sT/glV/wTMlvtb07xl4F/b0/Zo0rS/D9zpM2hWNp4XufBGp6nZ6nYazq8/jK9tNXsdC0wA+n/APhXH/BVz/o9L9gD/wAViftLf/Th6AD/AIVx/wAFXP8Ao9L9gD/xWJ+0t/8ATh6AD/hXH/BVz/o9L9gD/wAViftLf/Th6AD/AIVx/wAFXP8Ao9L9gD/xWJ+0t/8ATh6AD/hXH/BVz/o9L9gD/wAViftLf/Th6AD/AIVx/wAFXP8Ao9L9gD/xWJ+0t/8ATh6APiDx94B/4KYp/wAFMf2SLO8/a4/Ygn8az/sQf8FErnw74itv+Cdf7Qdr4T0vwna/tB/8Eq4vGWi614Ml/wCCq17quv8AiDX9VvPBF94Y8T2PjjQdM8J6ZoPjHSNX8HeLbvxboeu+GgD7f/4Vx/wVc/6PS/YA/wDFYn7S3/04egA/4Vx/wVc/6PS/YA/8ViftLf8A04egA/4Vx/wVc/6PS/YA/wDFYn7S3/04egA/4Vx/wVc/6PS/YA/8ViftLf8A04egA/4Vx/wVc/6PS/YA/wDFYn7S3/04egA/4Vx/wVc/6PS/YA/8ViftLf8A04egA/4Vx/wVc/6PS/YA/wDFYn7S3/04egA/4Vx/wVc/6PS/YA/8ViftLf8A04egA/4Vx/wVc/6PS/YA/wDFYn7S3/04egA/4Vx/wVc/6PS/YA/8ViftLf8A04egA/4JNY/4dR/8Ex8dP+GAP2LcZ5OP+Ga/hnjsP89qAPv+gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPyb/4LnfDT4bfEj/gkp+3TL8Rfh74J8eSfD79nv4r/EjwDJ4z8J6B4nk8EfEbw74C8Tw+HfH/AIOfXNPv28MeNNAh1LUItF8VaKbTXtMivr+Ow1GFLm5Eiy/9xxn4W4+j+6x1Dxe8GcFQxtL93i6ODzTxf4EweaYSliYtVqeGzPCOWFzDDwmqWMwspYfEwqUW4y+l4XlJ1c/wjlJ4bF8Gcd/W8M23h8T9R4PzzNMD9YotunX+p5ll+BzLCe0jL6vmGEweNouOKw9Csvr/AONn7Svhf9m/wx8FG8QeGfGHiW7+KXjn4ffDXRYPDHhrxJrFtYya3d6fDq+qajdaHoetSy6hpuitfaj4a8EaXaX/AI28f6vbDQ/CmiTWUHijxHpXbmH/ACMMf/2GYn/1IxB+a8F/8kZwl/2TWQf+qvDno3wj8S+K/GMvxO8SazbeILTwjqPxAtv+FR2/inwjqfgjX4/AVp8M/htYat9v8K+ItE8P+MdK3/E61+I0lr/wmuk22t3tk1tqek+f4HuvCN5Lxn0po/GL4LfCL9oX4ceI/hH8cfhz4T+KPw58VW6W+veDvGejWes6LeGCUT2V7HDdRO9hq2lXaR6homuadJba1ouqQ2uq6NqFpqdtbXigH5yjwj+2j/wTzWSf4V/8J/8At8/sc6YRI/wc8SeITrv7dn7P3hyFS9xD8HfiD4nvra3/AGvvAmiQJIdM+GvxS1rSv2gtO09Y9O8MfFX4l3w0bwQoB2P/AATj+I3hH9qq8/ah/bl0K+vNatvi78bvE3wZ+Gdxrmia54d8ReDvgT+zRfXXwz0LwHf+EvFen6b4t8B3t98U4fi/8UPEXhTxPp2l6/ba/wCOrldV0e0W30+1jAPKv+Cuv/BRPRv2UP2Xf2pvD/wU+OkXw6/au+HvwG1b4m6FrFv+y78aP2l/CvwtW/s/ESeBLn4u33w68O6j8NPgFf8AxT1HQNR8O/B/xh+0dr2meALvxNbXGu3Hg3x34a0HxN4Zm+W4hzLGUcBUxOVV/Zwy3P8AIMszXEVKdHC4StXzHFYFf6uYHPs0pvJKfElShmWUY6rkSWOz6vlmZZPgMLl2Bx/E/Cufr6Xh7L8FUzbJsLnVNQpZ7DFTy5zeIr+xwWBx2Fw2acS5hk2WVYZ1iOFsojUrwzPOMNUwOX4CpRx2Or5pVoZLneWy/Un4Q67qvin4SfC3xNr139u1rxD8PPBGu6zfeRbW32zVdV8Mabf6jd/ZrOG3tbf7TdTyzeRawRW0W7y4IY4lVK/T+NMvweUcZ8X5Tl9H6vgMs4mz7L8DQ9pVq+wweDzfH4bDUfa16lStV9nRoU4e0rVJ1Z25qlSdRznL834Ox+LzXhDhXNMwre3x2Y8OZFj8bX9nSpe2xeLyujiMTW9lRhTpU/a1ZOfs6VOFKF+WnCMFY/Ffxf8At0/D/wD4JU/sNf8ABTTxJ4vNleeFv2C/2mPG/wAH/wBnTwVczTQ23iO++NnwW+A/7VH7PvwH0G3tXS5sPCHga7/am0v4U6PZaVCsHgb4O+CBLZ2q6D4aMx+ZPoz51/4JD+OfjP8A8FafC3wG/ak/bz+GXxqXw38BvBfw4k+Avwx8cfDrUfCn7PviH4w+FfC+j6XrH7Y3jLWfF0mgah+0Z8ZvHWurrviH4U/8Iz4R1P4H/ATw9OkuiaxqXxmvbjxjbgH9OtAGF4o8LeF/HPhjxF4J8beG9C8X+D/F2iat4Z8WeEvFGj6dr3hjxP4a1ywudL1zw94i0HVra80zW9E1rTru60/VtJ1K1uNP1CwuLmyvbea2llRsMRhcNjKLw+Lw9DFUJTpTlRxFGnWoynQrQr0JunVjODnRrU6dalJpyp1oQqQaqRUzfC4rFYHE0MZgsTXweLwtaniMLi8LWqYfE4fEUpqdKvQr0pwq0a1KcVOnVpzVSE0pRmpLmfnfwU/Z3/Z7/Zo8Laj4H/Zv+BHwe+APg3VtcuPE+q+EPgp8L/A3wu8Lan4murDTdMuvEWo+H/Aug6Bpd7rlzp2kaXp9xq9zayahNYafptnLctbWlrGvfVxeLxFHC4evisRWoYGlUoYKhVrValHB0KuIrYurRwtKc5Qw9Kpia9fE1KdJRhPEVq1eSlVqVJy4o4fDwr1cTChRhiK9OjSr4iNKEa9alh5VpYenVqqPPUp0JV68qMJylGlKtWcEnUqSl7DXObBQAUAFABQAUAFABQAUAFABQAUAFABQB8Afsaf8nIf8FdP+z/8A4af+ul/+CWdAH3/QBxHxK+JXw++DXw+8Y/Fb4reMdB8A/DvwDoOo+KPGfjPxRqNvpfh/w74f0uCS4vtT1O/uZEjhhhjiIRAWnuJ2itbWKW6mhibnxOJpYSkqtRVqjnWwuEw+HwuFxWNx2Nx2NxVHA5dluW5dgqOIx2aZpmmOr4fL8qyrL8PiMyzPMsRhMuy7C4jHYjD0J9WCwWJzHE08JhKaqVpqpL36lKjRpUaNKpXxOKxWJr1KeHweDweHo1cVjsbiqtLB4LB0q2MxlelhqdWqvye/Y7/bm8fftMf8FPf2vfhFpnxO1rW/2e/h/wDsxfs6/EL4d/Cbxn+yL8Z/2XPiV8L/ABn408efFnSfEx+IOl/tEeFfDPxZ8c6r4o0fw/oGvaN4sttH8M/DC68JXugWHhfwYviHTvFvjHVuzhuhVxPD3iTic0lRxWY8P8fcG5Nl+Iw+Kwvs8Blmc8McWZtiMpxGWYWrVxGXZhCOByqtjqee1a+ZYiSpZ9lsMuyDOcBk9Pzs1xmElj+AXlFbkwOe8N8bY/E0KlDEzq5lUyjG+GtDLuIcHmlWNPBZlkWLqZ5nuFyqvklKnhaOIoZrk+aYrMszyr6+v14ufFOgWnivRfBFxf8Al+JfEHh/xP4p0jTPst632vQPCOp+D9I8R3/21LZ7C3/s6/8AHHhi3+y3V1Fe3f8AaPnafbXFvaapNBmbnQUAFAHwB8R/+Urn7F3/AGYB/wAFOf8A1pb/AII90Aff9ABQAUAfk9qf7ZvxU8b/APBQHV/2UvBvxm+Cf7N2keGdS0TS/B3gX9pr9j/9ovV/iH+2avhvRdP8ZfHXXv2RfjTeftGfs7/CXxDo/wAPtJ1m38C39h4L8NfGvxf4Q8VeHPHHxC8ceGYvh0PC0WoVwzH+1qOc5jiU8ZSynMcX9b4dwKnlnEWVcN0sRUyPAcRZr/aFPF1ngc74iy3OngsywGS4jhylkT4TnWz+ed8QrK8JefJZZQy+hQTpVMdlWHxP+s1fnxvDVDPsyx2Iw+B4TrRw1HC4aGcYPBf2Nm1TD1OI4Y/OZ55iMiwOV4LMOF+IcTV/UHxZ4p0DwL4U8T+N/FV//Zfhrwf4f1rxT4j1P7Le3v8AZ2gaBpl3q2sX/wBi062u7+8+x2Flc3H2Wxtbi9n8vybS2muHjjaSDoKACgAoAKACgD4A/wCCTX/KKL/gmN/2YB+xZ/6zX8M6APv+gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAPAv2mP2Y/gz+2D8IPEPwH+Puk+MPEXwu8Wq0Hi3wt4P8Ai98ZPhC3irS5LO/sLzw54n174M+P/h/4i8QeEtVtNQuYNc8Gatq914S1xDbnW9FvXtbJk5K+Cw+Jr5fiayqyq5ZjcPmWC5cTiqVKnmGEqwxGBxk6FKtChia+X4qlRx+XVMTTqywGZUMJmWCdHMMNhsVDrwmOxWBjjI4WpGk8bg62AxFRUaMq31TEOKxNGhXqU5VsJ9bpRlhMXPCzpVcTl9bGZZiKlTLsXjcPV7fwT8J/AvgD4ceEPhTpFjrOueDvA8Hh+Hw5B8SfGfjf4ueIon8L6vZ654Z1DVvHXxY8R+NfGvibWfD2r6dp+qaLr/iXxDqeuadf2Gl3NnqMU1jYPH6uNxuJzDEzxeLnCpiKkKMatWNGhRlWlRoU6Cr11QpU41sVWjTVXG42qpYzH4ydfH4+vXx9fE4mfk4HA4XLMLTwOBpujhaLq+woe1rVIUIVK1WssPh1WqVHh8JQdR0sFgqLjg8Bg40MBgKFDA0MPh4+jVynWFABQB8Afs2/8WD/AGk/2nP2Z/Ev/Eu0z4sfErxX+11+zjqM/wC5sPFnhX4mx6FeftCeCdOkO2C48ZfDD45y+J/HXiewt44G/wCEC+L3wy1OKPUdRi8Z6pGAfnF+0v8As8ftx+EIP+Czvwe+H/7KfiH9qzwl/wAFJvBHijxP8D/i74O+KX7Nvg+H4YeOPEX7I+ifs5SfB7486L8avil8M/Fdl4b8IX3gDQvEnw98V/DPTPiXptxpPiOey1fR/DWs2etX9x8vjcBjsx8OanAs8NHDZhk/Hud8U4DOIyw8crz7JeION8HxpN1qdCrLG0eMMiWEqcOUquOwawOaZZhuDsPLiLA4DL6tPB/U5XmmFyzxK4R47dd4nLaWT8E8N5jw84V4VMjq8KY/GwqYn2kqc8JiuEeKp8R5lxBxFPL41M/yrEf61ywnB/E2Z43AQzD74+D3gH4ofBmP4c/tVftT+OvDnwx8O/Df9ic+Afir8JpfH3/CZeAvgR4i0O6+GeveINX8G+OrbwJ4FtfFekazpfgi9n8catqmgReIYfEun6VpOg654p8Ft4Vs9E/TuM8wwWbcXcS5vgK/t8Nmuc5hmcaip1qdL2uPxVfGYmnhXiKdHE1sFRxGIq0cBjMXhcDjcbgoYfG43J8sxdavlND8z4OwGMyrhPh3KsfR9hicsyjL8tlTdSlUq+ywGH+qYapifYVK2Ho4yth6dGtjsJhcVjsHg8ZOvgsHm2ZYWjSzWvW/Zk/ZT8D/ABX8H658ff2pfghoOu/EH41ftM+NP2xvDvgD4r+GrTXJ/hJf6n4I8G/BH4DXeqeFNdjvdL0v4w+Dv2a/hf8ADTQ9e1G7sJfEPw/8W33j7wn4Y1a102S+e5+ZPoz9LaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+AP2NP+TkP+Cun/Z//wANP/XS/wDwSzoA+/6APz9/4Kb/AAC+NX7Rn7JOreEf2fRoGq/FLwN8WP2fPj34X+H3i7VrfQvCHxiuf2ffjl4E+M7fBnxJ4gu9N1ex0Cz+JA8FLoVhrWq6ddaDp3iCbRrvxLEPDseqzLyRxGKyjiXgXirDZe84hwfxXSz3G5NSq4XD43Msuq5FxBkGLWT4vG1KWEwPEGVwz3+3+G8biK2HhheIMtyytDH4GtGGZUu2jSw2YZNxjw3icweSvjDhPOOFaHEKw9fFLIqma+wjUxuIwmFlDGYnLcbhqeIyTPKGDm8VUyDM80hTwuYLnyfE/HfhD4bftxfHz9vn45/G/Uf2ZPiB+xD8LvjB+wJ8Mf2fJPix45+Nn7Nuv/HLwb8W/AHxi+OnjJD4U+H/AMBfGvx70LxPo+p2PxK0+0m8R3/xQ+H+vaV4at7rUPCusaP4/fTI9N9PIMPhsqwHiph6+NhKnxPxXwNn/D8KVCu8ZXp5Bw7nHD1eGaUJRjhMum6WKr4vFVKGY4+VH/jHcFgoZjHHZ/ism8vMcXi8wo+HcVl/ssTw9DxGweeVKuKoyoUaXEtLwyzDDf2RiIRliMxy+njuHauFy5YvC5ZicRip8Y4zMsuyfD4DhWvxN+k/7Ov7PepfCLwp8LP+E68feIPiB41+H/wg0P4W6X9ubwlF4U8D6bLpngj/AITXQfAf/CM/D7wHquteH9a1XwH4V+x6p8SP+Ei8WwaZ4e0n7LqWnXeoeL/7R5zc+n6ACgD4A+I//KVz9i7/ALMA/wCCnP8A60t/wR7oA+/6ACgAoA/Nj47aN8WP2uPHPgX4Kal+x/8AFj4T+D/g7+038Hvjja/tTfFHxx+y5/wiF3YfAD4r6R41s9Q+AGg/Cf4+fGL4yS+Lvi/Bo0fge2tPif8ADX4R2Gn/AAa8X/E3UPF3iOw8W2WjfCHxDpkHJDNsk4qxihl9XI8PxQqeU4mDr51i8RxNwHxfwfHBqWCWKyinldJZ/wDWs/rVM5depRo4LAZZlmPli8ZmWX6ZmqdPKs9yOk6ebR4hyrLcu9vRpSWXYGdTMsmzirmNeePll+Pwuc8J1MHPM+Fsdl+AzCGG8Rcr4cxvJW4dp4jOF6Sf2SvGOt/Gj9orxf43+P3xA134XfHDw/4B8O3Hw7to/Atv5vg7SYPiJp3ir4Ra1dX/AMO9Tv8ARvh+NP8AFUy+F9a+F+u+CPHUn/CT+MrrxNqt349tLT4n6jmZn29QAUAFABQAUAfAH/BJr/lFF/wTG/7MA/Ys/wDWa/hnQB9/0AFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAGfpOraTr+k6Zr2g6pp+taJrWn2WraNrOk3ttqOk6tpOo20V5p2qaZqNnNPaX+n6haSxXVle2s0ttdW0kU9vNJE6yMAaFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQB5L8Zvgl8Pvj14Rg8I+P7LVANK1iz8UeEPFXhjXtX8J+Pvh741023vrbSPHPw88a+H7uy13wh4q0u31G/s4tT0q8jW+0fUNY8M65b6j4W1fXtEuQD5aHwl/4KUeCc6N4A/bM/Z5+J3hmP9xpuq/tKfsgeJdR+L1rCMql14l8Z/AL9pX4FfDrxjMiBAbbSPgp4FeWTzZptUcyIiAHSeDv2TPHPiTxZ4d+In7YHx+vv2kPEnhDWNP8AEvgr4c+GfAFr8Fv2XPA/i/SrqO90nxpoXwUt/FvxF8T+MPFWiX0UGpeF9W+Onxe+Kw8Ea1Z6V4n+HFt4Z8YWj+I5QD7boAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/GH4QeLP22dB/a7/AOCsdn+zd+z5+zB8VfBUn7b/AMKbnVfEXxs/bE+LvwF8V2Xix/8AglV/wTMivtF07wb4F/YM/aY0rVPD9vpMGhX1p4oufG+maneanqGs6PP4Os7TR7HXtUAPp/8A4WP/AMFXP+jLf2AP/Fnf7S3/ANJ5oAP+Fj/8FXP+jLf2AP8AxZ3+0t/9J5oAP+Fj/wDBVz/oy39gD/xZ3+0t/wDSeaAD/hY//BVz/oy39gD/AMWd/tLf/SeaAD/hY/8AwVc/6Mt/YA/8Wd/tLf8A0nmgA/4WP/wVc/6Mt/YA/wDFnf7S3/0nmgD4g8fePv8Agpi3/BTH9ki8vP2R/wBiCDxrB+xB/wAFErbw74dtv+Cif7Qd14T1TwndftB/8Eq5fGWta14yl/4JU2eq6B4g0DVbLwRY+GPC9j4I17TPFema94x1fV/GPhK78I6HofiYA+3/APhY/wDwVc/6Mt/YA/8AFnf7S3/0nmgA/wCFj/8ABVz/AKMt/YA/8Wd/tLf/AEnmgA/4WP8A8FXP+jLf2AP/ABZ3+0t/9J5oAP8AhY//AAVc/wCjLf2AP/Fnf7S3/wBJ5oAP+Fj/APBVz/oy39gD/wAWd/tLf/SeaAD/AIWP/wAFXP8Aoy39gD/xZ3+0t/8ASeaAD/hY/wDwVc/6Mt/YA/8AFnf7S3/0nmgA/wCFj/8ABVz/AKMt/YA/8Wd/tLf/AEnmgA/4WP8A8FXP+jLf2AP/ABZ3+0t/9J5oAP8AhY//AAVc/wCjLf2AP/Fnf7S3/wBJ5oAP+CTWP+HUf/BMfHI/4YA/YtxkYOP+Ga/hnjjJx9MnHTJ60Aff9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAHyD4y8Hftf3v7UFp4m8EfFD4f6J8Dx8INd0jTNG8QeA9e8T2WjePZPFnga5vW8U+GdJ+Lfw9v/E/iDXtPtLq58HeOrfWZNF8K+H7DxR4Nm8D6XrGry+NfEIB9HfDzwTpPwz+H3gX4b6Dcahd6J4A8H+F/BOjXWrS20+rXOk+FtDsdC0641Oezs7C0m1Ce0sYpb2W1srS2kuWle3s4IisAAOwoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD4A/Y0/5OQ/4K6f9n//AA0/9dL/APBLOgD7/oAzdZ1nR/Dmj6t4h8Q6tpuhaFoWm3+s65rms39rpmj6Po+mWs17qeratqd7NBZ6dpunWdvPd39/eTxWtpaxTXFzMkMcklc+LxeEy/CYrH4/FYfBYLBYevi8bjcXXpYfCYTCYelOtiMVisRWnClh8Ph6VOdWvXqzjSpUoTqVJqEZSNsPh8RjMRQwmEoVsVisVWpYfDYbD0qlbEYjEVqkaVChQo0ozqVq1ao406VKnGVSpUlGEIym/e88+Dfx3+BX7Rvg5viJ+zz8afhT8dfAa6tfaA3jn4N/Ebwb8S/By69psdpLqOiN4m8E63rujjVtPivbOW+003v221jurR7iFFmhZ++thcVh6eFrV8NXo0sbQlisFVrUalOni8LHFYrBSxOFnOKjiKEcZg8XhJVqTnTWKw2Kwzn7ejWiuKjisLiKmLo4fE0K9XA144XHUqNanUqYPFTwuFxsMNi4QnKWGrzweMwmLjRrKNSWFxOFxCi6NalUn6LHq2kzate6DDqmny61p2n6Xq2o6NHe2z6tYaTrN1rNno2qXunLM13a6fq934f1y10u9niS2vrrSdZt7SaabT79UwNzQoAKAPgD4j/8pXP2Lv8AswD/AIKc/wDrS3/BHugD7/oAKACgD81fjt+1L+3Z8IrtvEehfsa/s3eIvhlrPxe8F/Cf4ef8Jd+3V8RvA/x68cTeN/iXpXw68PaxH8ItG/YF+IvgfR7jU31B/HFtoUvxyu7nT/hzBNrnjO88Na1Z+JPDOnLJ39czPhjLM0X1OrxFmdHDzjlsoZlXyvKY4LG8QZ3mWKpY2eSUsTi+EOEMszfiPibK8FiaydTJ85yfhTH8RYhZLi8fOauWFy3iDH5ZyYuWSZRjMXCGZTeV4bHZxQpxwWByWnjaEc2p0Y8R8TVcFwxw1mUoTo5ljc0yStUoYZ4z6vH9GtW1bSdA0nVNe17VNP0XRNF0+91bWdZ1a9ttO0nSdJ062mvNR1TVNRvJobTT9PsLSCa6vb26mjtrW2imnuJkijkkplGhQAUAFABQAUAfAH/BJr/lFF/wTG/7MA/Ys/8AWa/hnQB9/wBABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfAH7Gn/ACch/wAFdP8As/8A+Gn/AK6X/wCCWdAH3/QB+dv/AAVR+GXxh+LH7FXjbw/8E7bx1qvinQfH/wACviRrXhf4XWnww1L4neM/h18Mfjf4D+IHxK8J/DnQvjH4Y8YfCzxT441bwd4c1c+EfBvxI8Nax4K8YeIYdO8JeINMuLLVHhfgrVKeCzrhDOsZPMI5RkHElPN84llWAhmuZ4ShTybPcHlPEGByh4HMK+aYjgniTGZFx1SwmUYStxZzZAsTwHCfHtHhmnL0MJh45hlnFOSQnl1HH8QcNZjkuVVs3rV8PlMsXi6uHeJyrNMXRxWFeBy/irKqWYcI4zH4ir/ZmBw2eVsbnVKtktHMKUviP4J/AH4maj4O/bs+M/7Hvxw/bZ8UfGT9o21+DKeOviF+3J+zr4c/ZN8U+K/E3w08M+KvDt94e+Dfw1tP2O/2JtV8IeO5fAN/4X0PUf2hPEHw/wDEPg7W5E8J+EPCXjrTvFnhnxb468K/QUqMcs4bjlNCjl1DBYriviDijDrD46pi8bXxubZbw5leb4+phI4+vh8gy/H1eHsLUw2VzweXZpjs3p8QcS5hl0aGa4DO8y+fqVp5nm+W5pXeY08fhOFsPkeMw+LoUqNChldLNcXmvD+Bli8PRxOGzrH5bisy4mhiJ0cxksmweJwGEhVzDA43ALAfsf8ADz4eeK9B8V+MPiF8QvF/h/xZ418WeH/BPg6afwd4J1PwJ4Us/CngPU/H2t+H4ovD+t+PviRqs3iCbVfiR4pfWdZfxSumXmmL4bsLHw3p13p2rarqfnHoHr9ABQB8AfEf/lK5+xd/2YB/wU5/9aW/4I90Aff9ABQAUAfG/wATPC3if4n/ALZX7OukXXhzXF+F3wB8JfED4+ap4ludI1OHwvq/xo8T2N58GvhR4c07WZbZdJ1nUvDng3xF8aPE/iHR7a6m1Dw/c3Pw51m+t7ddT0aeVZP+7zPijNa16csv4cyzhrJKdWEV9bxXF2bYjMuJM4wMpv2sMRw3lPBWA4eq16MfYV8u4/zXASrznDFUIvM7vKcny2i5SWc8QVszzidKcJU6eT8G4TB4jA5NmdJXnCOfcT8R5DxLlE5ckZYvgLGNOo6UonM6v8GP2qviD8U/2nfDfj74seD4v2e/ir4P8HeDPC2m2XgjVL/VtP8Ah9q2n/EnRPHvhvwjCPifpdp4B+J9jaa39o1r4keJfDnxD0Pxfc6n4J1az0Wz0Tw1N8I9NYj7uoAKACgAoAKAPgD/AIJNf8oov+CY3/ZgH7Fn/rNfwzoA+/6ACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/KLwp4q/aX/AGZv2lv+Cgl7Zf8ABP39p39oDwV+0B+078Pfjb8NfiV8EviF+wNYeFb/AMK2H7A37EPwE1bTNT0n49ftvfArx/pHiLSPH3wJ8bWt1a3Xgn+ybjSTomraTrd/BeyJEAevf8NlftIf9Ijf2/8A/wAOV/wSW/8AppdAB/w2V+0h/wBIjf2//wDw5X/BJb/6aXQAf8NlftIf9Ijf2/8A/wAOV/wSW/8AppdAB/w2V+0h/wBIjf2//wDw5X/BJb/6aXQAf8NlftIf9Ijf2/8A/wAOV/wSW/8AppdAB/w2V+0h/wBIjf2//wDw5X/BJb/6aXQB8weLPi9+15r37bP7Pv7SFn/wSd/bfj8FfCv9mD9sT4J+IdKufir/AMEqU8WXviv48/F79g3x14N1HRbGL/gpnNpVx4f0zSf2aPG9v4ou77W7DU7PU9U8HQaRo+r2l5r1/pwB9P8A/DZX7SH/AEiN/b//APDlf8Elv/ppdAB/w2V+0h/0iN/b/wD/AA5X/BJb/wCml0AH/DZX7SH/AEiN/b//APDlf8Elv/ppdAB/w2V+0h/0iN/b/wD/AA5X/BJb/wCml0AH/DZX7SH/AEiN/b//APDlf8Elv/ppdAB/w2V+0h/0iN/b/wD/AA5X/BJb/wCml0AH/DZX7SH/AEiN/b//APDlf8Elv/ppdAB/w2V+0h/0iN/b/wD/AA5X/BJb/wCml0AH/DZX7SH/AEiN/b//APDlf8Elv/ppdAB/w2V+0h/0iN/b/wD/AA5X/BJb/wCml0Aehf8ABPb4V+PPgR/wT8/YX+B3xT0RfDfxK+Dv7IX7Mfwr+I3hxNU0fWU0Dx58P/gj4G8JeL9EXWdBv9T0TV10rXdIv7FdU0XUb7R74Qi70y/urGWC5YA+vaACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgDP0nVtJ1/SdM17QdU0/WtE1rT7LVtG1nSb221HSdW0nUbaK807VNM1GzmntL/T9QtJYrqyvbWaW2uraSKe3mkidZGANCgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA+QfGXg79r+9/agtPE3gj4ofD/RPgePhBrukaZo3iDwHr3iey0bx7J4s8DXN63inwzpPxb+Ht/wCJ/EGvafaXVz4O8dW+syaL4V8P2HijwbN4H0vWNXl8a+IQD6O+HngnSfhn8PvAvw30G41C70TwB4P8L+CdGutWltp9WudJ8LaHY6Fp1xqc9nZ2FpNqE9pYxS3strZWltJctK9vZwRFYAAdhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAeU/Cz4x+EfjMvjW/8AAVvrmoeGPB3jHXfASeOLrTUsfCfi/wATeFNSvNC8aw+Bbq4uxqHiPSvB3iTT9Q8K6t4lTTIPDN74jsNVsPDGr6ymnancxThn9Zy3B5oozo4fMXOvlkMRCVPEZjkzoYSrl/EuHo2lKGR597avPhzFYr2GJzzKsNS4tyvB4jgfOuC+KM1mpOEMfjcvjKNarlslhsxq0Wp4fB5xTxGMoZjw/VrcyVTOMjlhqdPP6GGVbDZPmeIq8MZhi6XGGUcW8PZfXs/jb4Mm+OGq/s+alb+IfD3xCg8FJ8SPC8WvaJNa+HfiT4Ctr/SdF8S+Ivhx4mgmu9I8Qv4A8Ra1pHh74h+GZbmy8beDrrWvB2t6/wCGbbwZ40+G/ijWKwaljqOd1qEZJZBj8rwOZU6sXSrQjnOAr4zKMxoQn/veWY+eBzXL4YzDupHD5plWY4LHww85ZbPE64mnPCwy2vUXNhcz9tQw+Mpvnw9LNaEsXUq5HjJXU8Hms8vwyzrAUcRCOHzjKXmFbIcXmGJyDjbC5Z69QQFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfGn7Tf7dHwZ/ZU0D4x6/4z0D4sePE+AvwYvvjx8XNM+DXw11r4iav4K8B+brNp4W/tm20yW3ittW8eah4f12HQLWS5Wz0TQtD8UfEv4l6l4Q+D/h7xR8RLPkhjKc67pRp1vYLNsm4eeZTp+zyr/WTO8dlVDBcP/X6ko0P7So5dmdPiHN4uX1TIslnksc+xeCzvi/wtybPvRy7LK2Z5tk2SYerh1mWdOrXw2EnUm8TRyejDM4Tz/EYWjTrYl5fiMxyytkWSYXC0cTn3FWfxzDKuCcmzyvkXGby31v4o/tAeBvg78JbH44eNrDxXD8NFj8Pan4v8TaRoEmuJ8NfCGuW6Sy/EPx/pulXVzqlh4D8KGa1k8f+JtFstZtPA2hy33j3xcunfDPQfGvjbTfVxmDq4LiLB8NVpQeNx3ES4WoYiLksuWcVquLwmXU8TjKsKccFhs2zPD0MnwONxkaOFhmWPy2GYVcJhalfGQ8fI60uI8ow+bZThsTiZYvJ8JnWByqFJTznMMPiIYTETweXYKjKqsfm9DBV6uNp5PhKtbMs1lha2T8N4fNeJcVkuSYz22OSOWNJYnSWKRFkjkjZXjkjdQyOjqxV0dcMrKSrKQQxHzHnlGUJShOMoyhJxlGScZRlFuLjKL1jJOLTT1TTTu026oVqOJo0cThq1LEYevSp1qFehUhVo1qNWCnSrUatOUoVKVWDU6dSEpQnBqUZNO7paTq2k6/pOma9oOqafrWia1p9lq2jazpN7bajpOraTqNtFeadqmmajZzT2l/p+oWksV1ZXtrNLbXVtJFPbzSROsjSamhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAc14zttevfBni6z8LXMdn4lu/DWvW3hy8lVmitden0q/i0i5kVZ4GaOC+e2ldRPCxQECeMnevzfGOHzLF8HcWYTJ/af2tieG89w+Vexk4Vv7SrZXjqeB9lNSi41PrMqThJSTjJxfMmtfX4eq5dh8/yOvnFNVcqoZvllXNKTg5qpl1PHU546m4JpzU8MprkTvJPlTu7n87njrSPD3ir/AIJK/wDBLn4Y+Kv2X5Pj7Yt4b+GPgnx7ceMf2Y/2hf22vhp+z78Wfhv+z1498L+NNe/aA/Y6/Z51/T/F/wAfdTtviRo3ib4ODS/GHiDRfBvwq+M2u2Hxn8VeLLLxf4D8O6RqH03ifDLs94rz2tw3hqaynMeEOIeJPDvHYfLZexqZTm2E4Vp8EZPwpjq/scv4AzzPODuJfrvDPG+KUKmScN5dn3D2GpywmeY/Dz8fhWvmeV8P8V/6w495nneG42zbKONqeXY7CUZ5nn+XeIvEmI4p4hq1IYPEY7OMgyvi7Iv7UzThTI8qxON4n9tl2SVcpwOW1MfmeB9D/ZDl+Iuq/Aj/AIIA+CNV0j4keD/jT8NbLxUfjR4Q+L/w8+JXw3+KOjfDP4T/ALGvxW+EHxbGveDPil4d0XxqnhSw+LPjX4JeH7LX5Jz4V1LUtV+Hur6JqniXSbrw/dTfX5vicLmHiVxRn1GtTxmBx3g/m1TH46FWGIqzzLiHjDwexGBw2Z4mMacsFn2cZ3w9mudzweZ0KWa5thuH+J8bTy22FxuaYTiqYTD5fwtxPlVLB06FPCeMmByzguOAwFTA5Jl1OlxJx1neWvJKP1vM8Lhchh4R4fibJMpw2CxuMwuXUMfheG4ZxHF4evgav9AtfHHcFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAfiJ4t+G3xL+Ifwh/wCDg34H6bpF14m+NPxZuviYfhj4XW9tLTVPFXgf4n/8E7vhP8PfggNC/tPWRBZaFqvivwl4z8DadqFxcadosvjbw546INvcWurlfHxtKNXwz4X/AHeJqyyXj7iqfFby+jjXj447L/GqpxtJwjgIvH47NcP4V5xwFicJTy1V81qZc8kyzLaVTG0cLhV9XwxjaOB8cOGcdjsdhKOVU8j8G8wymVSpSpUcq4dw+YcR5Xm0ccpwpxw6nx/k/iBm9SviHUpzw2Op4h4v2FsJQ5D9j74a/BX4U+JP2o/2ifht8IfHn7N/7H037FHgXQP2gIPjh8H/AIv/ALPkvxZ/aC8An4peIvip8aPFnw1/aH8DeEPib4h8S6H8N9TstM+Kn7Rnjjwvdt8ZrzWLGO68Y+OdV8F+Irqx7vESFavwb41ZdRjhsbk3F2b1sT4Z8K5TRw2JxdCrjci4q4e4iWU5JltCbyHD8fYyt4f5Fw5wRTwtPN8ZnXDGbZuuHcNhc74fzDNvi/D/AAuZVs98GcNh6WMhxdkuSYbI+Ks2rU8RFYvH1s24LrcE5RWzGpiKC4hxfCOIwvGeK/tLDV62XZTlPEeV5Hl+fylh8dk2W+7/ALG/wr/4KD+HPhr+xdF4p+J3gzQPDnhv9gn4U+DfFXh7xn8P/EniO48N/Gix8P8AwhTxLZ+P/C1h8W/h5qvijxrqEenXq6F49j1VdH8NadpXjHwjP8PNB1jWZvFWu/b8e1qOJ434sr0a9LFKrnuZSq4vDzjUw2Mxf1uusbjcLOFWtF4XG4tYjFYVKviOXD1aUXjMS4vFT87h2eAq5VDEZPRlhchxWLzXGcL4OcXCpguEMZm+YYrhHAVKbo0HSngOHauW4SdGVGnKjOlKjOlGcWl+ofw88E6T8M/h94F+G+g3GoXeieAPB/hfwTo11q0ttPq1zpPhbQ7HQtOuNTns7OwtJtQntLGKW9ltbK0tpLlpXt7OCIrAPkj2jsKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA4DwZ8LPh58OtY+IGu+BfCun+Fr74n+KW8cePU0Zrqz0vxH42m06z0y/8YXWhx3A0a28Ta5Z6fYp4l1+wsLbVvEstnY3fiS81C8tra4WcPGOFwUMuoLkwVLHZnmNDDayp4XE5viI43NIYLncngcHj8y+tZ5iMswjpZbPiPNOI+Jfqn+sGf8SZni5qRjVxlbMJpPF4jC5dg8VXiuSeLpZXQlg8uq4xQ5Y4vG4TL44bKKWY4lVMxWQ5fkGQSxcskyTIMvw82mfDTwHpHxA8UfFSy8OWv/CwfF+kaJ4d13xheTX2pa2/hjw8JX0bwppd1qV1dnw74Usry4vdaHhXw8NO8PT+J9S1zxZd6ZN4n1fWtXnMPCOFhmEMPFUlmuLweOzJwVp47E5fg6mBy14qo71K1LLMPWxayzCzk8Ll9XMc7xOCo0cVm2dV691m8RPAzrPneW4TFYLARelPC0cbi4YzMJ0aMbUoYrM61DBRzPH8n1/McLlnD2Ax+Jr4DI8gw+H7mqEFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAcBe/Cz4eah8TdC+Mlx4V09fib4d8Lav4H03xxaNdWGvv4I1q/tNU1Dwfq91YXFsPEXhk6tZW2uWOga+uoaVpfiCNfEGkWdprTPfmaEY4WvmGIw69nUzTA4PLsytd0sbhsux1XH5VPE0JN0KuMyevicyjkuZypvMsowedcV5blWMw2W8R8U4XGzXjHEQwMKyVT+zMVi8Xl82rVsJVx+Ep4TMqVCvG1aGCzWlhsBUzXLlU/s7M8ZlPDeY5jhcRmOQ8O4rCzeP/AIaeA/irpOmaB8RPDlr4s0DSvEeh+LIvD2qzX0nh6/13w5dHUPD9x4h0KK6j0vxVZ6Lqq2uv6bo3iW01PRbXxNp2geKIdOXxHomgapbEYRji8ux0Yr61lOPo5pllZq8sFmeGhVjg8xoKV4wx2XVKn13K8Xy/WMtzSlgs4y6pQzbB4DG0rk3LCZhgW/8AZs0wVTLcwpr3Xicur1KUsZgJ1Y2qxweZUacsvzbDQnGjm2S4nMsgzWGJyPMM0y+t3NUIKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAM/SdW0nX9J0zXtB1TT9a0TWtPstW0bWdJvbbUdJ1bSdRtorzTtU0zUbOae0v9P1C0liurK9tZpba6tpIp7eaSJ1kYA0KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgD5B8ZeDv2v739qC08TeCPih8P8ARPgePhBrukaZo3iDwHr3iey0bx7J4s8DXN63inwzpPxb+Ht/4n8Qa9p9pdXPg7x1b6zJovhXw/YeKPBs3gfS9Y1eXxr4hAPo74eeCdJ+Gfw+8C/DfQbjULvRPAHg/wAL+CdGutWltp9WudJ8LaHY6Fp1xqc9nZ2FpNqE9pYxS3strZWltJctK9vZwRFYAAdhQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAflB/wVI+H/w6+KHif/gmn4M+K3wD8P8A7T3gq6/bf+KGs6l+z74m8KfC3xlpvxW1Lwl/wSf/AOCovjDwv4RtvDfxm1bQvhde+IL3xPoOjS+Ebn4ha/oHhLSfFsWh63rXirQbSyk8Q2wB+MP7GHwX/Y3+MP7SnwO+HOvfs4f8EQfiV8OfjH8QP2tfEVzo0f8AwTN/Z18PXeueAfB958U9d8I/Df8AYM/bf8NfF1/gx/wUv/4VLqN74I0e/wDGPwL/AGVbPW/BP7MvgXxxrX/BRe3/AGYf26bnQf2e/EgB+7//AATFtvEl7/wR7/4Jz2Xg/V9P0HxRef8ABOn9j208O6/qulSa3puh6zcfswfDeDT9avdCjvNPfXINJuXj1CTRRqFgNVEA05tTskne9j58VCU6EoLE4nCwcqX1jE4GlRq5jSwSrQ+vSyyGJwmPwyzR4NV1ldXF5fmOCo5g8LXxmUZjhYVstrbYepCjVjVnQo4v2XNVhhMTKvDC4qtThOdDC4yphcRhsTSweJqqnRxlbC16eLpYWVWrhZrERgzD/wCCbHx08Z/F28/bC8HeKPj58TPjrpfwO/aCsPh14P1P9o34O+DPgR+1ZoWkTfCL4c+I9Ui+Lnwp8FfBz4A6ZpvhLX/Emr6zrnwS8U6h8GvBGv8AizwFcPdX9nq9lZaX4rve7L6izHg7IM+nhcJTqZlmvF2Fw2Jy6tiZxrZTlGcxwOCw3FGCxOJxbyDjzCYiOYSzfh6jXprDcG1/DvN82ynJuK824lyLD8OJhPA8U57kbrYyay3AcP1sRHHwwaoVMzzChj6+JxvCGKwmFw0c64Dng6eW5fgs+rTxzxnH+X+JmDyrOcdwrgOHakf06rE6D8gf+Cu/gr42fHb4UT/spfBuy/b/ALj/AIaI/Z//AGr/AAV40n/Y6+Hv/BPHxJ8KF8N614a+Hnw6ksv2lvEf7dPif4ZfYft3/C0JX+HPw9+Afxr+GPxa+IPhq2+NuoWfifT/APhDtP8AG2gAH5AeDPg3+1/8Qv2kPi7438H6v/wW+1fxj8Df2/8ATPjJ8VLP/hBP+DaKw8SeF/jFq3/BJf4Wfs+6dpP9v6n8c7LwRrnxAufgZ8Yvh5rv/Cd+HPBOp/AqL4S69/wqy4+Bkf7Uul+I/wBqK0APYP22P2t/2g/Cfx+/4I0jUf2iPD/w28L+JfEFh+0e2q/tV/8ABO3xx4m+NP7ItvqP/BMT9rLwLdeMf+CoN98Cf24Pg54M8C+IPirc+Jvj7q8mj+E/gZ8Avgl8Mrf4TftOfFPxN8U9I+DX7KPxfsdeAPX/ANlnwDf+B/2uf2dfhVoXxz/a/wDEv7RPws/b/wD+Cl//AA038OPil+3d+218ZPANt+wT4N+GHxx8Q/s7/wBveD/jJ+0F45+Bnjb/AIR7wR+3T/wSX13S/wDhH9P1z41W2tePNN1XxPjx34B/aluvD4B8AftK/tIfFPxB+2l8LfD+gf8ABWf/AIR34Rfs7fD/AMP/ALVfwH+Nf/BQT9rv/glj+w5/w0T4++Nth+05+zF4Z+Nn7GM/h/8A4ItfHCz+LP7P/gr4baJ+0f4H8Q+IPiX4Hj0X4yf8LW+EP7QPwDcfA+x+Cfxy+IwB9v8AwU/az/aY1/8A4J5f8Fef2tdG/b18QfGzxr+xz8H/ANqvwJ8L9Z8DfF39gP8Aat/ZYvfih4J/Yi+EP7VHgr47/DL4tfBX/glx+xRqvjDxB4E1X4jQ/DfXvAvjLR/EHw4s/EeieO9L8S+HfEd22jXemAGB8VvEHxE/Zh+JH/BRL4w+G/j3/wAFvvi7Zfs2/wDCOQfti/tMfD3wx/wbr6h4b0/RfhT+yX8N/wBpGx8H+DdI+PHwb+HHxaHw/wDhR8JfjPD40tfht8OPhhpvw/X4teOvjZ4w8F+GdY+LfxA+LXizXQDf+L/h/Xfih8VfBX7N/wC1mviD/gpN4K+AP/BZ7xb4G8G+Afjx8Lf2OL7xX8VvCdv/AMG1fxe/at8O/DPVfCuj/DD9nP8AZy8QeIIPjH8UPEVz8Pdd8faJ4W0zSdTm8IzeLvHljaaFF4rtgD5g/Yw+C/7G/wAYf2lPgd8Ode/Zw/4Ig/Er4c/GP4gfta+IrnRo/wDgmb+zr4eu9c8A+D7z4p674R+G/wCwZ+2/4a+Lr/Bj/gpf/wAKl1G98EaPf+MfgX+yrZ634J/Zl8C+ONa/4KL2/wCzD+3Tc6D+z34kAPoDwV4B+G//AAwf/wAG5HxB+JHxz/aA+C/gHxX+z/8As6fDP4+6v4A/bu/a1/Zd+FH/AAoT4ef8EW/2zP2l7vUvG9h8H/2gvhV4D8N/8I348+FXhPxt4l+Ls9ppvjX/AIRrwpY+F/E3jeX4a2U/h2gD7f8A2EJ/Fnwh/b+/ba/Zv8SfDf8Abf0Hw5qnh/wb45+A+q/Hj9sHU/2vPhBbfs+fDCTSPAul/EzVb74i/ts/tTfGr4BfGD9q341ePvj1c/D3QfGGifDDwP8AGH9m39n7wjNoHgTSvjr8Hv2obFwD5f8AGvwQ+M37Zn7V19+1B8NPCH7X/wAav7O+H/xB+GGg3Hx6+NX7f/8AwRD+AnwK8Gah8TPDPifS/hR+z3Z/C6PT/wBs3xZ8QPFnhvTvAPiL9qPxd8YP2Wfiv+z/APtL+NfDvgnxZ8Jv2sf2eD8BNM/YVvAD7A/Yn8O61a/ATxD+xxP8Sf8Agp/8Cf2m7j+1fi58TvjF8fvB3xA+LviTwRrWp+NvCGoXXhn4IftJ/tJ3H/BRf9ia/wDh/P4Zu/D3hX4a/ATwh+0f+0J8QPBPwkutcm+J/iTWP2u9B/aK+MMYB+MEfiv9rb9oX4X/ALGPirxR8fPjB8SPGviv9mD/AII8/tR/tD/Gzx3/AMFNv2uP2BYNTn/4KMfEj4ofCv4U/sc/Aj4F/wDBMj9j6T4OaV4f8X/tHeANP0Hx1+0d8aPht44+NumfBL4l+IvhynxO8P3ejfCj9o74YAH7P/s2/tI+G/2cv+Cf2tfHjWvgv+0Brevp+1/45/Zn1r4H6Z+2b8Wv24fH2s/Huy/4KCS/8E2vDukfCn9oP9vL4lfCy9Pw/wDGXxJ8M+G/FWnaf4t1b4WeCvCmia5r+vXXh228Sz+Jr7UQD4A+GX/DbHwB0nU/+Fy/8Pf/ANkDwD8aP2//AIu/2P8A8Kz/AOIeL4h/AT4T/wDDwH/gpr45/wCFEf2n/wAJT/w0h+0jd/a9Z/aP8A/8Ld+y/wDCxf8AhGPGuo+Nv+EJ+3fDTSdAwAb/APwV9/bW8Wfs+/tT+LvEEX7Wn7EHwOuf+Cf37EEf7dn7MvwA/ar8G6nrXiz9rT9qf4s+Hf8AgoL8Dr3SfhvqWiftk/s1+J7nxB4F+F3wq1b4PeD/AAz4e0P4jeHW1P8Aag8S+KfHHw58T/EDRf2dr/w+AeweO9M+MXwI8Z/FH44+HP21/iB4F/aJ8fft/wD/AAS51j9sX9jb4e+BvgVqP7MEOi/tT/tAfsRfsWWEfg3xD8eP2SJf2lviJ8P9U/Zo8KQ/Ci1/aX+HHxW8EfD/AOJn7R/wo+NfifwX4C+EHjzw78Wv2XvBoB8Qftn/ALXz6p4n/aE/aA8Y33xg/Z0+GHxj/bf+An/BLX4teE9c0D/gnx8O/G3j79hvwF/wSf8A2pv26fh8fHfhn/gp9Pq/7OXw38QfHf4x/tn63feOPC/7QWo+AfHrfs8Wvwu+AHij4JfD/wDaqj+LHw91wA+v/wDgl5+2/pEXhP8Abc8eeOf2xPjB8bf2NP2Ov2YP2dPFlv4y/aP/AGg/+CXP7Vv7Qfw3n8E6b+1xrH7QHifxj4i/4JaeM/i34n8W+H9R+F3w8+EGq6PrXx8vPEHxt+I3jjQ/ilf+HLvxHqh8QzuAfo/4M/4vt+2H8XviD4I/4s54s/Y0/aA0z9lr4z6vpv8AxU3/AA198BPEH7C3ws/aX8IeA/Glg/8Awj2m+DP+FS/Gf9r3w742+GHii9tPHfjXwF/wg/xi8L/DjxH4W8FftP8A7Qnh24APP/26f2lPH2v/APBP6H4x/sMfFD+w/H3xK/aA/Yx+Cvw/8Zz2ui+D9a8Oa18W/wDgoJ8Af2Zfil4F8Yab8ZPgF8bv+FMfEDw3/wAJb41+FvxJ0n4m/s7eNPiB8CviBZeJtN8YfBG5+Jfg/UfAwAP5wvDvi7/gt94R+JnxJt/DHiP9r/RP2lvi3+1/4O+DPxJu9P8Ahj4hg+B3i7wD4I/bAuPgN4e+NeqeKV/4NT/+GVf+TVf7Hm179uG2+PMOt+Lfg14O+EnxL8Z/CfWNA+GHwi/YC0QA/sN+FXi+50PSfhJ8FPiv430/XP2i4vgh4e8X/EDTY/EOkeLNW1O58O23hTwp468b3viPwv8ACH4H+HdR0/VfHGqyW+meIbL4O/CTSPGFz/bGoeDvhD4U03S9b8G6QAdh8JvHX/C0vhR8Mfid/ZX9h/8ACxPh/wCCvHX9ifbv7S/sf/hLPDWm6/8A2V/aX2LT/wC0f7O+3/ZPt32G0+1+X9o+xW+/yFAO/oAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/MD/gp58Brv46WH7E1zqP7G3/DdPw0+D/7X9/8UvjV+zp9h/Zl1r/hIvAN1+xN+2t8I/D+vf8ACLftVfFH4UfCXxX/AMIp8Wvix8MNa/svVPFSa3YeT/wlXh/TrzUNEwoB8AeDPht8d/8Aha/xduP2lf8Agjh+0B+2V8NPjd8P9M0L4leOvjB4V/4Ir+Efj38WNa8E+Jvhbrnw9079s3wR8MP+Cjug/softx/8IZL4Zlh/Z1+K2s/Af4NfED9jzwV4M0v4aeAtJ+KGofGb44fFi0AP1T/Yu+EHx6+Df/BMf9jj4BTTeE/hT+0T8KP2LP2afhPrJ8d+HR8XfBvgL4seA/gd4F8JeJbHxJ4e+HvxV8BxfELS9B1/SNQsbmPwf8VNGsNYWEXWieMGsZIL18MRHFSpxWErUKNVV8LKU8RhqmJpywsMVRnjaMaVPF4SUa+Iwca9DC4l1ZU8HiqlHGVsJjKNGpgKu1B4eM5PE061Wn7HERjGhXhh5rESw9WOFqynUw+KjKjRxLo1sRQVOM8Th4VcLSxOGq1I4yHpX7PPwD8YfDLxF8Uvi18Y/iF4R+KHx5+M6eBtO+InjH4cfC/Vvg58Mx4Z+GVn4h034deHfBvww134q/GfX9Fi0q18S67qGu6z4o+KPjHxDr3iPWNTlh1TSvBlp4M8B6P3wnhcLlssrwFGvToYnPMx4ozCeKxFHE1sTxDmmR8KcO47EUZUcHg44bALKeDOH8Lg8A4V6tB4fEYjEY/FYnE1aq4J0alfNP7VxMqMq9LIMq4Xwiw9GtRjHJcpzzi7iLCrF+1xeKWJzB5txpnsquMoRwmHll8srway9YjCYrMcT9Q1znSfIH7dP7M//DX/AOzzD8B7nSPh/wCItA1f9oD9jHx/4+8LfFLT/wC1vAPjH4UfBH9tD4BfHT4u+CNe0OTw74ns/EX/AAm3w2+HHirwtpfhrWtJk8NeItb1TTtA8V32l+Gb3VtctgD8gL7/AII6aLofx7+Kmu/AL/gnz+wB8LtAb/gp/wDsW/tI/DL49X+k/D/4YfFf4Pfs1fs5eCv+CWnj/wAaaN+zD4U+E/7MvxHvf+LsfEj4L/tWeBvEHgbxN8RvgFaWXibXtY8e3Efinw18RtV1mUA/R/8Aai/Yu8J/Fb4/fstfEOx+Dnh/4j6TrP7T/iHX/wBsC78e32meLtN1b9nyL/gmJ/wUL/Zj8M+BtT8OfEfWdStr/wCD8fjP9oHTNFj+BHgXSpfA6eLfi78Zfi9e/D7+2/H37QHxA1AA5/4c/Bn49+Gv2lLj9urVfgZ8P7TX/wBoD/hG/hd8Sf2fNKfwVD8YvgB8KL288F6L4e+Ng+LC+Mpvht8RP2gNVsvC3gKP/goX4V8K6pF4a8bfAr4TfspfCv8AZ4+Knxe8TfsIfCKf9pAAPH/7I/7Q3xG/4KC/HT43eD/2m/2gP2Vvhp4h/ZA/Yv8Ahbo3if4F6d+xh4k/4Wh4++G3xx/4KG+LPHGg+KtF/aQ/Zr/aP17Q/wDhWeg/GH4eahoWqeHdL8F6Lr3/AAn+s2dxqXi3UNCmttCAPkDwb+y1+2H4y/4J1/8ABcb4feN/Af7QGo/Gr9tL/ho3/hQmk/tSeKP2FrT49/Er/hKP+CWv7M/7NHgv/hPL/wDY48R237Lngv7f8Tvhr4i8E+F/sV54c+y+CtJ8O+KPiP5Gr3+r+I7kA+//AIy/8Ew/2PPj74k+OniT4j6R+0B/xkps/wCF/eEfAH7cP7dPwg+FHxZx8JfB/wAELv8A4Tj4MfB/9pHwJ8Kta/tr4VeBPCngDxL5/gw/8JP4Z0exsfE/9pYmdwD8wPil+zN8bPjpr+vfGf43f8EvPiB8YPhp4o/4K/6X+1J4n/Yw+KWs/wDBPHx94+8RfATRf+CGWnfsS6L4817w54s/a11j9mnWP7H/AGltJ0vVtL8L6h8ZZ/Gthomn6d4/s/DkWoWltaqAHgz4bfHf/ha/xduP2lf+COH7QH7ZXw0+N3w/0zQviV46+MHhX/giv4R+PfxY1rwT4m+FuufD3Tv2zfBHww/4KO6D+yh+3H/whkvhmWH9nX4raz8B/g18QP2PPBXgzS/hp4C0n4oah8Zvjh8WLQA9A+Dv7LP7XPhH9nX/AIJ7/Cr4v/sc/D/4/XvwN/YA+H/7LmgfAX4hfGb4YWH7KPgXx9qP7LXwF+H/AO058Tv23PFeraB8YteuPiBrmg2PxY/ZO/Ze0n9kz9mr9obRdH+GmvftJ23xs+M0fwl/a01LSPhkAfX/AMA/hB+0r+x349isNd+Hn/DZei/F7/hTXgvxr+1T4d+Jl3pf7Svw/tPDOi2XhnQvCXxI+Hn7TnxX1/8A4Sb9kD4Bb/iN418HeK/Av7TXjj9pr7X8SriPx7+zV+0R+1r4p/a//wCCiXxPAPkDx/8A8E+vH3jf9sP9vb4u+MP+CTX/AATA/a80D4w/tAfDHxf8K/jJ+2v8VtF0X4r3XgHw9+wt+xv8J9R8OeHtD0z/AIJ1fth3uk/D/QfiR8NviGmkweI/HfhbW7nxNc+MdVt/hnaeGrzw7478RAH0B+wp+zv+0r+yT8Mv2+YvAP7FX7IHwI8WfEr9r/w38UvgJ+zT8Lfj7d+EP2RpvAL/ALIH7DHwp8V69oPxU8Afsc2nivwX9v8AFfwz+K+v6ppep/slaLreqfE+z1Kwk0658Fa/pHxyvwDz/wDZ6/4Jq+PrTwZ+zB8N/im//Cob39kv9kD9iL9nrxR8Xfhn4q0Xx3f/ALTXxx/ZU+AHxJ034K+P/C3gH4maD41+Eukfs/8A7GXxa/aJ+JPxv+CbfGn4IP8AGX4p/tteGvhN8XPFvw+8A/CX9mb4QS/GAA9f0/8AZn+IvxK+Bfwb/ZW+Kn7OHh/wh8PfFn7T/wC0t8bf2uvEXhD40/FPwJbyal4K/ai+LX7Qfwu+PX7N3iz4Y/tI3Px3+Cfxg/aq/az1H4OftqfDb4bQeNfF/hL9nb4JL8cPgB4++LenfFDwr8F9M8TgHgHw1/4J6fFTXPEPgey+Lvhb4wG58P8Ah/x3448N+OPiT/wUV/4KWfHb4LeCP2wP2Sf2rdAu/wBk342+OP2X/Hv/AAU68aaV8aPg/wDtWaVZ+Bv2vvAf7Oup6za69+y9cfCbxB8EfjR+0F8Q/iB8QPB/inwuAef/ALYnwX/4Kd/Hjwn+3T4i+GH7Fnwft9W/bf8A+CMP7Pv7OnjnwJ8SP2z9I8L+LPhR+0bBpn/BS29+InwV+Ft54S+BHxK8GfHPxB8PLn9p/wAMaO/jLx/4v+AHwd8U6m/hyXw78TJNF1Dx9rHhMA/R/wDbV+DPiT4sX/wj8H/C74Gf2l4s8eftAfsQeP8A4qftHxP8JdD8N+AfhR+w1+238If2t9O8EfFrVtT8Zad8Z/Fn/CWabp/xa8O/s8+Gvht8PfiR4a0P4teMNen+JN98LfBXibxF8S5AD8Yf+Chv/BGr9o39sX43/tQ/E3wJqfiDwV41+JX7T/x80b4KeONQ8a/B20+HXw//AGcvjh/wb1aN+yV8U/F2raLP4I8e+Lrjw/8AtH/tTfDv4Nfs8fHC21Xw34y+MXgr4WeArT4jfsreFfhVeaz8QfjZr4B7/wDsWf8ABLz46eFvHX/BUf4J/tceMfjB48+Bn7TXh/wp4Gs/i7qniD9l20uPjr8L/Hf7dv8AwVJ/af8AjZ8M/Dlp8IPhx4L8T+BvD/xD+F37YnhrwR+0Vrvir4ZfDr4kaL8bfiR+0nb/ALFvjzwx8KvCn7M3xF0IA+oPiNqf7bv7Kfi//gpPrX7N37FHxA/ah8fftQ/ECL9oX9mjxn4T8c/sraV8DvCnj7Sv2C/2XP2ZvB3gH9o3TfjT+1v+zd8VbT7L8Vf2bbzxb42X4U+G/FWizfBrxX4SuvC/xBm+Jcvi7wLoAB3/AO0B+y14k03yvBvwe8B/EDxr8J/Hn7X+h/8ABQr43+FdD8UfCXRP+EV8Sfs1f8Kj+OfgX4Bfsl6H4q8R+BfDnhL4gftdftm/B/4Z/GT4gp8QbYfCXxT/AMJf/wAFAviV8Uv2g/hb8aviH8GNeuwD8wf+HMPgz/kp3/DqT9gD/hTn/DQH/C+/+GHv+EY/Z/8A+Grv+EMz/wALF/4RH/hrf/hQn/CB/wDI+f8AEy/4dt/8Jh/wz/8A8LL/AOLNf8PlP+HWv/GGtAH7nH9mH4DfGHxp4a/aP+Jv7Pmn6X8RvFHwv07RvF/w++KOh/DHxZc6bc6onhXWLax+Iem6DqfxG8A6n8UPhoukzeB08Z+BfGGu6RJpFxrOg6f4w8V+ELbwXqFqAfV9ABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFABQAUAFAH/2Q==" alt="" />

4)医院选址问题的算法用伪代码描述如下:

1.对加权有向图,调用Floyd算法,求每对顶点间最短路径长度的矩阵;

2.对最短路径长度矩阵的每列求大值,即得到各顶点的偏心度;

3.具有最小偏心度的顶点即为所求。

5)代码附录

 #include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define INFINITY 1000000
#define MAX_VERTEX_NUM 20 //定义弧的权值信息
typedef struct Arccell
{
int adj; //权值
} Arccell, AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM]; //图的邻接矩阵
//定义结点信息
typedef struct VertexInfo
{
char name[];//结点[村庄]名称
int position;//定点编号
} VertexInfo;
//图的结构
typedef struct Mgraph
{
VertexInfo vexs[MAX_VERTEX_NUM];//顶点数组
AdjMatrix arcs;//邻接矩阵
int vernum,arcnum;//分别指定顶点数和边数
} Mgraph; //对图的初始化
Mgraph initgraph()
{
Mgraph c;
printf("请输入该图的顶点个数和弧的个数:\n");
printf("顶点个数:");
scanf("%d",&c.vernum);
printf("弧的个数:");
scanf("%d",&c.arcnum);
//依次设置顶点编号
for(int i=; i<c.vernum; i++)
{
c.vexs[i].position=i;
}
//依次输入各顶点信息
/*
strcpy(c.vexs[0].name,"a");
strcpy(c.vexs[1].name,"b");
strcpy(c.vexs[2].name,"c");
strcpy(c.vexs[3].name,"d");
strcpy(c.vexs[4].name,"e"); */
printf("\n请依次输入各个村庄的名称:\n");
for(int i=;i<c.vernum;i++)
{
printf("村庄%d:",i);
scanf("%s",&c.vexs[i].name); } //依次设置各弧的信息
for(int i=; i<c.vernum; i++)
{
//先初始化邻接矩阵,相同点设置为0,其他全部设置为INFINITY(无穷大)
for(int j=; j<c.vernum; j++)
{
c.arcs[i][j].adj=INFINITY;
if(i==j)
{
c.arcs[i][j].adj=;
}
}
}
//再依次输入需要设置的权值
int i,j,k;
printf("请输入需要设置的弧长及其两端顶点[输入3个0结束]:\n");
while(scanf("%d%d%d",&i,&j,&k))
{
if(i==&&j==&k==)
break;
c.arcs[i][j].adj=k;
}
/*
c.arcs[0][1].adj=1;
c.arcs[1][2].adj=2;
c.arcs[2][3].adj=2;
c.arcs[2][4].adj=4;
c.arcs[3][1].adj=1;
c.arcs[3][2].adj=3;
c.arcs[4][3].adj=5;
*/
return c;
} //输出邻接矩阵
void printMatrix(Mgraph c)
{
printf("该图的邻接矩阵如下所示:\n");
int count=;//用于计数
for(int i=; i<c.vernum; i++)
for(int j=; j<c.vernum; j++)
{
if(c.arcs[i][j].adj==INFINITY)
printf(" #");
else
printf("%4d",c.arcs[i][j].adj);
count++;
if(count%c.vernum==)
printf("\n");
}
} void ShortestPath_Floyd(Mgraph G,int dis[][MAX_VERTEX_NUM])
{
//用floyd算法求有向网G中各对定点v和w之间的最短路径及其带权长度dis[v][w]
for(int v=; v<G.vernum; v++)
for(int w=; w<G.vernum; w++)
{
//对各结点之间初始化已知距离
dis[v][w]=G.arcs[v][w].adj;
} for(int u=; u<G.vernum; u++)
for(int v=; v<G.vernum; v++)
for(int w=; w<G.vernum; w++)
{
if(dis[v][u]+dis[u][w]<dis[v][w])
{
//从v经u到w的路径更短
dis[v][w]=dis[v][u]+dis[u][w];
}
} }
//输出距离矩阵
void printDis(Mgraph G,int dis[MAX_VERTEX_NUM][MAX_VERTEX_NUM])
{
printf("\n经过Flyod算法之后各顶点之间的距离如下:\n");
for(int i=; i<G.vernum; i++)
{
for(int j=; j<G.vernum; j++)
{
if(dis[i][j]>=)
printf(" #");
else
printf("%4d",dis[i][j]); }
printf("\n");
}
} //得到偏心度degree[]数组
void getDegree(Mgraph G,int dis[MAX_VERTEX_NUM][MAX_VERTEX_NUM],int degree[])
{
for(int i=;i<G.vernum;i++)
{
int max=dis[][i];
for(int j=;j<G.vernum;j++)
{
if(dis[j][i]>max)
max=dis[j][i];
}
degree[i]=max;
}
} int main()
{
printf("**********欢迎使用医院选址系统*********\n");
Mgraph c=initgraph();
system("cls"); //输出邻接矩阵
getchar();
printMatrix(c); //定义距离数组,调用Floyd算法得到结果
int dis[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
ShortestPath_Floyd(c,dis); //输出各个顶点之间的距离矩阵
getchar();
printDis(c,dis); //存放偏心度数
int degree[c.vernum];
getDegree(c,dis,degree); //显示各顶点的偏心度
getchar();
printf("\n各顶点的偏心度如下所示:\n");
for(int i=;i<c.vernum;i++)
{
if(degree[i]>=)
printf(" #\n");
else
printf("%4d\n",degree[i]);
} //得到最小村庄的编号和名称
int num;
int min=degree[];
for(int i=;i<c.vernum;i++)
{
if(min>degree[i])
min=degree[i];
} for(int i=;i<c.vernum;i++)
{
if(min==degree[i])
{
num=i;
break;
}
}
getchar();
printf("\n偏心度最小的村庄编号:%4d\n",num);//输出偏心度最小的村庄编号
printf("医院应该建立在村庄: %4s \n",c.vexs[num].name);
return ; }

6)测试结果

1.首先运行程序,出现如图6.1所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqMAAAB6CAIAAAAEU83xAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAEARSURBVHhe7Z15kB3Fnef7393Yjd3ZnZidiJ21x/ba2GNjT+wEw4DGYIVZQEISEqKNZGHPjm0OG9azNmCEBBZCgASihQTIGJBsQBK6L9To7Eut1t3q17f6vl8fr+9DF3Q97S8zq7KysrKy6lW/lvq1fi9+UtSrl5WZ9a3q+uTvl1mZaQUFBYcOHdq1a9fGjRvXrVv37rvvvv3222vWrFm9evWqVasyMjLewA8qgAqgAqgAKoAKpIICQO0333wTOP7ee+99+OGHW7du3bdvX1pmZuZHH30EUF+4cOHXv/MPaKgAKoAKoAKoACqQ6go8+eSTS5YsAe/9k08+SQM/fuXKlXBK37r5f73/500jV+JgF7+4mrB9fvVi6tiFz69eexv5/KrDrlwdCWXDV66Gs6ErV2W7fHUolA1evppsiw9eRmMKJF3bCZVhwKs8oeo8gSoT7g+WHOX68w/3GIGjgj64pCdeIk/dL0bjP/vFo6PJ/ryz9g/JzfLdXz+S3AzHktuCe34IujGIA82B6UD2p556Clz8NMD8f/vvX1730Sc9F+J1vfHyLmJliVhpZ1y0ss44MWcOLNsQllBNaGKDWKdtpZ2GZCUdht6KOwyNRTqMSLvDitoNt52LGqIVRg1uZ9sMbmfaDG6nWw2HtRmnwVqNU5adbDWItRA7YdnxFoNZQbNtx5oN05qMY01GvmBHmwxijcTynJbbaJjWYOR6WE6DYVq9kSNYdr3hZVn1htrqjCzbRrPqRrNqiR1OTTtSO6q2utEjCZtxpO5a2OE6w22H6oxDtaYdrDXGwUYP1uptPAq9dnly9eQNEFZlyqvAdsq3Qb1xhJryD8r8A2wwsqnZf6p02/yLpn/j4h8+exSYjwXns4I/Rviz5XizQYw+cPgjiDyR2KOJGn9ekacZe4iZT7n4mTbTzkbjohVG45aR5yQ8OXsvGA88/Ejfhc/b+i4ny3pHPl+5+g/Dl41o/+UE7Uq0X2F9I1+s/eW/9lRVN326B6x13562TGIdmXs6ie3uodaXuXuA2M6hzJ3DmTtHvE36Fb7CIXAgHN5P84HcujN3Q86QfzstCwzKhdJjxcXz//cP+i+a7KvtNXouGEB24DvAPg2Yv+7DTW2DidGdA5gx3qS7BXiR6BVdcWKxhK08Fg9jpD1haExsBCi33S0DvqekU24iKBsE+nZAEPy72wHmHwxtCvA/JHuDsp+b+RfYbJxgf5aWmX+uTUYBxT83sR3AtvmfvbiR12SY5tU+4A0FupGjN/lJNJrdMJpdTywrNY1VXmFwXgmb+bBmj+xxNNo+49ggFBHYb2KJUj+pvJ/kpOdaKZDvAXsmtRfyx8J7CflBeC8+EMhTwnIbgvNefEZx2Fu8B9+G8P4smMB7kfQA+3Ei/euU9NB0SBbp33n0//RUnm/atZ1Zy67tbbvBtnbs3tq5e2ts99aePcT692wdoDaUoLGjwCAHyKd7D8kTcm7fvRVKaaUlsqI7C8/96IeE9CLCWgfjwHegfBo4+ODNJ+46k0NsxlMPngOeob3SsvOx+Plu06q640GMp09sAwoyzaiMuazLqPCzhJoIvtECuR3QbhRbJrYGxHjAuXbDNBYSoF8LmdGowFlqZ7hZTWbxz4kFBsQ/NmUwgDUIeEiANQjEwADfliIEmiaCu9Eg72k08lVGHYtRbnmNoylnYv3HvG0GXUx/i3ldyTbu2LFADnMBAQwM/CL1uZefJN4HIT1Pk9xGxrXOLXX9ez3vlc49PE9E/96X9wT2Au8p7M0HnUn6kST79CtWvc1IzywR3qt9+rd+tiBWXlG3ZRNY45ZNTVs2tWzb1LptU9u2TR3bNnVu3xjbvrGHWv+OjQPENgx5G/w6KPwKX+EQOLCP5tC9fSNkCAY5Q/5QSgstEcqF0jtPnU6f+s8S6QFS4NkD5dMgml/bmzDpbVdeYLwIeEZoBvXqHtNqeuJBjKdPbAMKsqyq25AtZlRp7XzM8DJFoyFmVDhNaiKYnQisK8HZmwCBBDtIIPQj2M0C2jXA2gSkp8C7s8BuFqhaA442gdBHYHcW8FaCV6hAiMiJMQOx74BH8Pw3aIxBaWLgQdPgULZCJs5O91lM8D1MOtaMY4Ecxn5GfRv5lq/JeJ8M2N9ApAe5PGEPP13XeL4Z0tfG8x28D+bcE94HCuYrnXsH6XuGrzR1X3Rbs3Nnc8/FIBYbvPzqG28NXPhcTNzScxFs1Tsfzv3Roxpbtfajlt5LknUPXXnrp+mdxSVVH6+v+Xh9HdiG9Y0b1jdtWN+ycX0btU5q3RvX92xc17dxXf/GdQPU3nl2MS8OtpV7YCccAgf2bFwfo/l0WNlC/lBKwwZSIpQLpbcVHJ97x21u0tf0GED5tP5LYTrmeWc88+M545n7TuhOAQ9crwXrJSMAmNVrjScLvQFlUTMc1mPUWgannZBVdxtuk5oRmlYC/CQ2FMT2gSJ+0GmUCyMMWOeCGDkg3QfMlE0E1iywrKjDIEbHEIhtAjlsIAwgsEcSWMED0lwQRhXAtjiwYIzbjjhEgGaHottC2ZdxnXbKwyyUoy6UMZjrtJPpCQ9lM7rDwG8hX+Q9+PcssHwNYT9JfHqxYZSofx8inq/swrcH0ITtv9fzHm4bd+d9EP+ePkCknnszbMl8+q7BS7Udw8zq9NY5XOdh9Z3DzDoHLi17fXX/yOd8D98A6F7VfiBBQ9eIZF2Dl9fMm91RWFj5wdrzH6ytola3jljjurVN69a2rlvbtm5t+7q1neveia17p3vdOz3r3mYmlgjbbz21UNpjpSQHwuEd696BrMBaaM4NtJRaq1AovTUvb85tt7hJDxAByqfBGPuEQveiN88xzwL1nPHMcWeAJ2jvizdQa+zXWUN/PIxZmbMi1NYbbxBMam14tSqsRgNrOngaj1IoIhCOMIPdbWF1MdgdHLyng22wYQ1kwxriYA5ZcI5qtC+cc1BkSWdcacWdcds64sUd8Yje2uMRwYra40o71x73tGj8nIcJY3D4YBw7dicOYLyBt0VlxmsbwqfwwIVWF6G+NbRT4r0Zz7/WsE9K/GBiZRLCv08y74VhH+KQPV3/vTVwh/Pe7L+jLr6j8945Uo+1IN0j9eBO44P1LG9B5D2BPcSc5zz8SLR3pKypl1t5U6/OmnvLPayiuRestXv4969kxAYusq+iBSF9ZUuvZK09w2/Muaf15ImiVa8Vr3qt5M3XSt98rWL1a5WrV1StXlGzenn9muUNa5Y3r1nesmZ5dM3ydmKvdFJb82+/ldDOWxqwH36FNB1rXmlf82p0zast1JpobnVrlkPOkD+UUvHmitI3V5S8uaJ41YqGwwdn/cN33aQHXxFei0uM9ArMM8ZzzIuMZ3SngG/qjzeDDSTbWLbUoIjgFqjN4Wo3QJNFNitEITUXEmgZCK0BCISoBjGwngh7rAO0qCqZCYMhxCYCtA98X3NwN+9KYeAFM2e7QfPVq0lB9neoDZoXfqZ78UH/WsSk+9VXq7EmgKYetN6goQYNL0A+4z0bvQFPcHiy28F81nmfTNgHj+FPLFono//CO6TvPWQvKUP0pfH56iH6YeP5Yue9ODhfyXszBmaPzHcE8xnpW7qHIvUx0YrrY6GtqWvw+ZdXdvaNlNTHJOPQdQfwGYBhf2lDTLLm2NDKmT9sKThWuGIZWNGKZcUrlpW+vqz89aVgVa8vrVm5tG7l0oY3lja9sbT1jaVt1NotW/1//5+7hQF7YD9Lw9LDgXA4WB3YSpIn5Az5l72+tJSWCOVC6XX7P5vx998OQ/r9BWXbDhxjtnW/adv2m3u2HzjGbMeBYwePl1Z2jYJTC7F65sczD56hFwDfMhBvBRuMwyB/t8H+MMbypAb5J2pezY6mgUAtBk1bQYwrOFoGQs+FMpDA2wdWnEDqaCCREjty4NFE0I1hpG0yz/ZBIu9H6F6LCNDO8GuIkF4Md0eG73sTEyQBq7zCtG+FeIwG9W+0+YnpmQMbVAvNMhbdYbyHaCrwnoX0GexhJCCL5LNhemYY/xp12ENrYBJinp1Ucv37hF7JC897pX/v7L9PaLCe6008k/eM9MDmwppOt52r6dRZbec5lTV0DCx+6fWO3pGi2k7JgK8D9AMb4k/i/khtZ6TOYY2dA69Pu7M5P+/0shfAzi574dyyFyKvvFDyyuLSVxZXvrK46tXFNa8urlu+uGH54ubli1uotQn25hO/5kWw0mEPT8DSw4FwOFgN2KskT8gZ8odSIrREKBdKr9m3d/p3vxmG9Dt27yssrigsLndZxbkSYp8eyv/04FGwT7btOl3bY2LeCtRfG8Zz2HtsGK0DtrUMGBprHjCI9cvW1G+YVpV5X1r6h1VGU1/khbS0F/KNxj6dNfQZpvUaDZbV9xrM6lRmjScYre2RraZnlI8wqO4xZKPjCRRDEWEnHYqoH0wg/aochMh2SkMRHV/9Xm3wffdBSDBa0UWsXG1Fv0tL+12O16/q/XmfPJg2a1+eZ56Ko3a+lJb2UpFHHTxLZzUXrO2Ps9Lu+aTNtV9KpvzKXhiJPJuW9myO/8sjiSjMXkY1X6IB3pv+PX3xiTv3omfPxugl1a0H4AX07Cct73XIH2f/Hq6miPwE3r9PhPfiWF3fkfk8mA9vhM1Z8Ehhddu2nBKHZZOvv/rNS/oBdJBge27JDqedLG967LcvVDV17cwtkQxy66Qf2NiVV8JNvf9o6S5qpyuan//qfy3btGH7tDt3Trtz1/Q7906/M3P6nfun33F4xh3ZM75/dMaU4zOnnJg15cysKUWzphTPmlLqtOVz5/IiWOmwR0xTQg8spDlAPvkzp+TNmJI9458Pz/j+/unf3zf9jr3T79g9/Y5d0+44s/qNKX/5H8KQPjuv4PKVK5cu+xikOZJztKA8yjrmWcRewHxkSRr/rDoyGI+aRvYvOS66+K49NZ/NSEv/uEYdCVCGB1Q7jbZBo60mk2blAH/wRoDZPqgmmQDpm/sjvwfSH7NaAKwp0GebVwtAA37eAsh8OS3t5Qi0A/gowhNb0m0JYevlCPvJa2ih3QhQDSdkAwyVbYLz3UYYC/DaQv7m9LRZmfmuVx/Jfutz7+ao3MLoMirVZpJP86ut2EsRliz/E1oHzzwVZe0mpDcPV5eVk5GWlrFbzLMs817xapHDo0D6ez+Jmjm43//030PPN5eN7iTb5mdZRNMmC/ITbRk4YM89e95tD32xbFg+GZBvufU4NC/pwYZr4+InOuWOsv/efuGTIt/Rf+/uvKcz7STKe0r6R8+cb/3kSOSTLMGORDYfiQTpVt+SHQHbKtjx0sZHfvN8ZWPntuyIZJBhK/24GxB8//bsiGXF23OInSxrXPTl/1T68Ydbfnjb9h/etuOu23bfddund92Wedc/Hbz7n47cfWvu3bccu+eWgntvOXXvLYX33lJ07y3Fgi2fM4eXy0phFYD9PFmEHniG5gD55N1zS87dt0DOkD+Usueu23bdRcqF0k+98dptf/HvwpD+6LHjVTWtK9bnvPbn7Nc/ylq58UjG5sOVlQ19vT0tzc1gvb097+89CwakP14eJXF7yaGvBlSnzdjRDgAmgD++Km15pH0oDhYdikd2pMNX2LAs8mJa2osn+Nd4tPazmWnpG2qFPXZDISH8E9gfXg41iRLqW9Y6aDhM8P5ZI0AOAPQbLZa5XX++hwUAfGDP3f0+08XnpK+vzJyelpEpePwnt6an3Z95sscMA5CmQFr6ukq7KeD1ZoHC9efBAGcjQB0M8AoS8P3Si4u5BHt71CGEyMK09PfKHaGFPcvgREh6GlGIvjdLTuAdh4Dc0hbmegUqhF/LCXdZSt7aCB7eIDVcFtGmh2o7a0JKlE6EpIF2TPByXSn5GQkqCacWOmcSpLE8exbGJ932Xm699epdUgP4Qdz6yRzDl1oM14b3uiH6min2lP33TtgD9dUz7bgG6+nfxCPR+wWPUNIXg23Osgy2jxQDDvu0H0iwJat4S7ZpW7OLwSjpX6hs7GJftwlGhtZrP5Bge3bxDttKduSUnCxrWvTl/1y64cNtd03ZfteUnXdP2X33lE/vmZJ5z+0H7739yL3/lDvt1mPTbz0+/dbT991aeN+tRffdWmzZ8gceEAuVtpc/MKf4vn8Ei9ADz95366nptxZMvzVv2q05994KOR+897bMe27be8/tu+++fefdt++4a8rpVa/d9l/+fcKkhw68vKPHqmvbH1/16S/f2vvkH3f9ev2O33y8raSktq8nJpJ+/YHThPQVMulbBto/nk0wz7rngfSc8SbaZZD7kV7AvBUY4BECzw3q5VO6HyccOiyQnu0nsHcxXtqji/m7ov2AfDvgD8hn5ozza5376Pr706ZvjfII/0nw6QXSg7tPYH9/5gnh7UEOe727T8IA3Q5Tvkao8ft1bYI8SnqP9gGjpn24NrGdzLPdEIz0pAFhUnZ8SO9qQDhJT7tOou/TOjhmdPBtRTkSRJ5LS3suT4rERN+/n2abWFZ2JuwVUEp6mPWB9tlbHfYQwIc4Khudx1+9s3vr2bi8JPegBwnjT+YYfqD38bxfwdcM0R9LF35C4/P9X7735r1jmp1WOvYeSF/ZtjmrhNkWwYCLbdoPJNiaVWJadslWiPlnlxwva3r0t7+vbIrBNrPtlkH6Gu0HEgDame00rfREedNzX/vLss2bdsyYumPW1N2zpu6ZNTXz/qkHZk89PHtq1uypebOnFsyeemL21FMPTC184AdFc39QPPdOZmKJxI9PT5f2sGSRuT8onPuDMw+QHCCr/NlTc2nOB2dP3T+blAUlQrlQ+tm3M277y/+YGOnZcOvDWblA+hc+PvSrP+74ydsfzl/73vz33qGk724mnybw6T/OP7b5bI5Iejt0Txx6M/bOwMxI3z5kEr19qH3jnLSZO9pd+62UtCmwsTbePhjPWu7qAoAIgfV58TjJnwQJ5qx6cQ7ZC3vIV/OTvqHGiA7Sco/DBlj04zmWiz9Aeg1mbI+2DRhtdHtJQZS0UbZHTd4XEIAdgtYAjd5/VA2+Pone//6YceiVtLTZmYUW7A/C11ciQHqywT6zM88Sxkf/PDvtvm2Z0LvPPtDHz2B/ehuvZMZiGrcHwJ+iTvwpqzvf9OnFfv2jUKX09ZXEyz8Bia3PtC1Rjvx9xPVnn4xPeyKL0tIWHTUD/sdp0+E4UJ/kk/GB1TsACchP7PNyxAoJEMyYn2UR0gioyJyWlv7BZjjWzH9vt1EgxOGB6NXd0Q/ut36/P7MAjqJoh5SsGbGXgl/dziApHSUymNEYgP2xyOeoHk0pcJFklf5+BTn8GNTw/sxjjIvOIjgsSRrzQ46yWycVNCZPDxeqQZs15CezCJKP8ys9QSLFtM1R+8StMuAUTKFsKezERCLn+TrlMk/TvVO8WDQTJju9IuxaUIl4MtZhz0bnsd56NjTPHIdP47GOAP51Iz1rDdwovE/6qL3gs+pqptDn8XyvyfPdvHdPoytNtOV+Ew9IPxv66avat+aUb8k2bWt2ObGc8iefelnfT//k0y9vzym3Lbd8e275yfKWx59acr4ptiO3XLKFL72lzxAS7Mwr57Yrr3xXXsWpipbnvvHX5Tu27n5o5p55Mz+dNzNz3swD82YenDcja96M3AX35T08reDhaScfnnb2p9MKfzqt6KfTii1b/uP5vETYhv3uPbAzQg8EO/XwtBMPTzv28LS8BdNyfnzfkXkzoJT9tEQoF0ov/OPaKX/1FwmQnr9VxUg/d+X6aSvenvnm6tlr35j7/grm0wPmWfR+Z9mBvec/5aTnQ+7JePsCIPGqw5ZDD368gugnVqXN+axYbgG4SA/J0lZl2XH+eJTuOcL2WNsM7Wb83x35HzJYfwFz5YtIsyCzyPT104TtjENWO0AifQsnPe2nB9K3VAH7yQYJ3Vvj9ZqPZdy3LUrdejJwj2z3RT+cDVVL//N54tzvp+2DM0D6fIK054H6MF6PBO1N0tf3RhZTkLOQPid9PQTwWQyfJCYBfIr5jH3MuScAJjiv7Ymuo890wnLTNKQnhUIyk/EM8LQl8UEFjPujODlKBwBaBKWkdzDDxJjAcgJ+Eyp86iFCGso2GX4OVlE2k6ItILHMzVA/5TTjMSW96OzybQFjkM4KJNikF/DPcmCesViE3baAwynmzYaFKhQBB9q+NWsTuFjOzoJwl8vCz1Q8ZUtDgdBmK8qSTmgqyQqL7OfbVtPBvjq2aOdprz+M9WND8wKSHvp62Sw6yYaur1t/w5E+NOwTcPG9V80JwntxvRxxsRyfznu3c2+9ec+c++4LxkM///WZiuad+TXb86p3CLYzr3rn0WryP7Vd3I5W79JYfvWpyuhjTy+tbu7ZnV8t2Z78ar3tza9225nK9hf+7kuVn+7e94v5mb+Yv/8X8w/+Yn7Wo/OzHpuf99j8/MfnFTw+7+Tj8848Ma/wiYeKn0gvfjK99Mn0cm8rc/4EX+EQMDgc7NSv5p2geeY9Pi/3MVLKkUfnH6Dl7n/8J0Ub/nznX/9VINJLb04z0t+38q1Za1bNeXflg+uWz/v4JebT8+h9RUcFmDfpBZ/eJj1HvujfS9s0DffpaRjApvhQ/Ijt4rNnKunOpz79ZxGzQdC+gTr3EDOwxgHY4/LEMXq0/z7y8RwyXu8cbQq0AulVPr1J+irorTdJb7rv1I8/C9453SCMJ9Q3P0B6y6eHDRrGJ4DP+KzP+AyQ/3KED8tnY/EY3fk2cJ330wPOCekB6tQX39dLiC778TBej/ncFeKQPZ1P/ynrvLeOoq68BXhSkONDiMVTSt656LWz1oDNbMInAf/Uv1T59JKvbx0iha+tr6JrTqtJietITPhNfXFOeqkfwdqviJDTY9NtzFsBA6udYUXCRfxLLj45hLvpkhfO9zv8eNomkFLK7juNoNgBErOp5FLDbIFJ18KV7J5PohOD9EH67FmapDcyUiDD8e3CHxvvZf8+VOc9H5nPSP+L37xworjmwJnmT080SrbvRKNomScamcHOzJO2fXayUbTC6q4nnn2lrm1A2s++7vezA6caJSuq6Xrhe1+vOXjg8G9/eeS3v8x6ilje04/nP/14wdOPn/jdY2cWPla48LHIwkeKFz1StviRcrDnHznvbZXOn+ArpIej4HCwIpob5Ak5Q/5QEBgrNPf5Zwp37Lz/pq/6k949QQoj/f3vZMx977Uf/emV+RuW/mTL80D6XqGf/srlS2Dq6D2Ligv99IJbb8OehOXNYXrOYD5E+0l8flWWMFyf8h5C8ZT0MJrP2XNvkt6x0+Q9BPNph327ELRnOM9cAl0M1ca57ekztkdgz5IC6LZ3kL7Fit4rSQ8ePDxzD1rsb+pn7nvGfjtob5J++rao2T3PSC/gXKS7+fYdZTkZl9djsH56sVeeRObJCHw16WsSJP1eL9KD/+0MuZtECUJ6FqU3GWMxSThQzSpXVD8A6d0jA5zMtjAckvR2A0LsJmdhAx60F0oMQ3qrDWTroyO9IzAgjqxUXiw7Vm9FSqxkELdgXfUTI3rPWOvr1vM0KcDm8WiRTCbe8zfv3SPzYXRXxrrtyzL+UFzfl13ccehc+8HCqGSHCqPcDhdGmcGew+fUVtrQ+2+LXmvoHD5cFD3iYVlF0eBW1ti79B//ri4nO+/3z+YteTZ/yTMFLz5z4sVnTr30zNmXnilc9kzxy8+Uvvx0+atPVy5/umrFU2C1K35Tl4hVrfgNHFW5/Kny5U+Xvfx0MTGSM+R/6kVSXMGy506+vqxs88at761f9vACH9Ir50FjpH/wg+UPfbRswaYl/7Jt0c92/Q5I39Ntjcjr6RkZGR7o7/cYkRcHfMLjkI29J4PyIMxOBts7R94Rx92Mw9PwOx1sT2hNIc1wfnwV64m3+trpMH7aGU921nw2kyZjpC9ik/PUfLbELJfR3awDGZdHg/YwEI948PCZnXkO+uAJzgmhoT8ext8depV2wJPt6EeU3AfF+LzNdfDgCdrvm51OAvJk8J39qn3DeRKQJ4Dvjf7JGmRHoG5RnG6Y3e11FWb0nrjsxAjFaSjeIG/Z2aF41v8NXe/EZachd8t9Z9H7PBhwZ/bIHjd9bgCt6ENTSrEea09n1BkJNwPgMARM0TNtu8hCbsc2Z7DecanfWgh0M1hyTkPmFJzU4xT74O3Q+qzMY3SgPns3j46oJ4PSreHxMPiOjeR3jMwn1aMv+Nkj8sg7AnxAH0nMBsaL7wLkb86ANwXMsfd0lLtZSm6GNebfUQrJnI3S9x57DyPyeBFkdB6phqOtcO/9JBO748AaVSD0VtAc+GgDcyye9mJ1mwP3aCZMbao8rW1lDN4AzNg5IUbkcXL7wv4G9emDDtkLNWpP2YXvfiXPJ54fYHC+exlc5YL3pfDmalPXg//yy9+veOtUSXVj7FJd58X6Lh9r6Lqot4Uvvdk/8kVD7CJYYzLs9e//faymru5AZsOBzMYD+5oOEms5uK/14L62w8Q6s/aCxbL2dlPrSdzgKDic5dNxZC/JlubPymrKOlSYuW/j22tn3vytmpYu4It7kVU6G+7nV72mOz2cnVdaXv/67m0r927J2Lfpzc82rDnw0ZkzpZz0Pd3dQ4MDvb29Xm/Zkd568k689TFD69IYe0J0/nKdIyxP+tRtX9zMxdpJOtrNjzkagHa9W6QfjENY3vzM+eycPQ0fRBroi/UAe/KSvTnyjg2yg/C7+R6dEH6HqZIl0rMOeD5zzhk6qo5G6aVBdunTTcDbw+nJiHrurzO33vxkLDI9dfP1OUJx2oNeIL1Pz4Pe1Bffa+fAe8FJRzgMzGYfswvZjtmmP7fMGpvmJn05m2mHwiOXbjPO0Y8JOSfMhFfRKHdNiljbFkfNN8EAb5S77Ks4yI6/NSe9ZG+9QmZnmLYsw37Lzl09hn/+sYoTx957FCHUh4LQPjWzFGhJkMH85kd8AY8koO0Mn7fshMOdL+MxKYRXB1XnS9so4oe2UeS3CoWLRYszFRC2BdHETnr9W3Z8gbtkv2UneecBSY+8186yN3beh47nO3mv77znM+e7eX+u9XJDbOSdTfsf+90yGJ0nGYzM97IH6E+wQI7b5i74uWQPLvj5WOxfb/qb2f/TtDlf/5s53/gfc7/xpbk3ffnBb345/Vt/m/7tr/7o21976Dtfe+jmr8/77td//N1v/Ph7N1H75oLvfRP+N+3vzY35bI/1dd73vgn20Pdu+tF3b0q/+RsPfufrc7/9tQe+/bU53/rq7G9+ZdZNfzvzG18Ce+QfvvXWvy5o7Rk533nZjXlr3ntv0h88kvvFF58PDfYNDRAbHhoaHhoYHuy/dPHC5UsXwZsfHBzs7+8DE2fOgVfqzbnu6Sz3ZB5ci7Jec91IhA48JY79Sr3nZLrCjLl83lzir78a8XpXnr0Wb78mJ86Hc57MkcdG1XEjAXkrGs963O0346Xp8FQvxQmz31C3G9DO47HOILk03U2SJ8AJMPtNkJlYAqQRJ4FxLPQX4FiviXQmwn7n9DiJzM9DZtQRQg6BdPCfbCeQtonOnMMnxE3ezDnKIHwQ2N+Io/O8ugOSG9IfD/+e81657L3XMjlAKXhVCvrsJYOR+XqDpfBYAtjQ2UWj19v6LhqJWLzvYhKs/2LcZQbE5H2tvk/hzTPw+/j0m3fsA4S7LTvvWG7+8ezcfP7Tpm27Cyrb+Wy4ZP4cumwdzCEvwd4DydTPrrbnsfeb49aRMviM9+Zc99Wf3cei8Zzowaa3I2/Ezc48Lc9rC+Pkyevv4uy27klt6Vy2xKqZdVOr2Dft/n0F3aNVYCxqnTtaFTPtfGyUxrrbYMNtlY6dpovsBYlrNYVtoOlaj8JcdS9FEpq3NfAsuYnNj5voNLc+6WG+PL/Zdj0nxC3bdw8ZAx9kflyeJpDaGp31s+GKU9+TdW6saXOSPRuuV3e7L+xv0H56Td//tee9Zj1c/ct47pH5GudeP4euOYFuK1lQW1pim311L4Z5Lmo4jC7trbRIu6Ex15JaZO4px+JeHsuK6tYGUyww5olwpQefcPT+bNOFnNL27JKoaDkl0ZxSYrml0bzS6NEyYscq2otbL7AVbszFaoXJ8jjvWzQr2YxtuRoJ9srVa8jSNdxcC99JK9ZIq9ScMt96hz51ug4vnfcXzIy9k8lr7WVt5fVpXFPSilOdiGFkFrmVaK2DNJ32xEpgrnXLVrxlNs7r0Izj4ivaVVsm2eI30XdpdwAdAM8GxyVk4a9CwBVu+HJ247DCjYbWQUg/CdewH/sgPh3vEw/pj9G/9+S9dhpd5Ro5+jn1zgDpqSUd9tACSIT34wR7mO5Cx/sS7a8+Pr1X/31ZJ3n11lycXrVqbQ3FXh1d45UvS0/WtfNatTbUyrOQoX7xWfFXiDHY5l58FvY41591LzurWIfeWk3OtdSsNXu8O8QqrAGjfKCXkbFR1LRXjlz1DsFIYsdqsyHWk2VNUb8lZSdCAlzWVlQg/BWBSXLEVWvZKnbXcNXaIE55EN4HyeeGS5Nc3suz7NEufPV4PdVkum7eBwnmK0fquefYMVfDs0hPeB/MuXd79ueS4Nzbf4+2cz9Onj0gwIkJL96HJD1AxQH7LrIQKniQsGI6LJkK2APnHrjIYEl8Xwv5Dtwy9LrWgA+4R7FUPKW1ezVYzVLx8BM0SmyDNWFVS8HCSq/cvJZ8tXxQ2xvjK6jyiwGXwWEdRkmH/ciOdBimqZqQdmQpahRR47cp+0oTmGuNwyIlaouSKc2VBnOipZQpInLuGN0Nsyf8taOz3pKJbxnjIUzKVqaHAdJsUjw+A+44rGIXkL4I+4BCqZONY0g/BO89Buv5BvOVC+TwCXTtpe4F3jPnXqL+WCL5eudeiOSrYA9+1Fh5r/Lpg8E+POkl2BPOMdg7ec+Qz1x8k/oqGIuhbz2Y2a8OPPOvrCyn2au5U4pLzjddyp36387xaOLyrLLn3Um8bWY2wimzRWNXnZObcxrajMScvUT2zadqilrLOJJbdjwMHvGpaq0G/IWL02Wn0Lb5bKKnINu1uiJMLtYfD4AHF8pckF5gvLlSLV+WPvnT3QfBWBDY41B8nZLhXHz2koVkIeL58uT5bt77BvMDTJjP/46kSD57bIpRfYn3wbvtfWDfzj23cYK9K4bPIrt+nv2YSM9hX0rn0TTj+VYPMfj3zMVnXn4VgFYywXt2Rb9lJPskEHxujf/t2YHNA+Y0Zm6DXIC3SW6Xt+1GOL+HzkYNMAWbhSe7SCYy6sRpjqmhm40THgYPaPMn59KQ5HDtUWZnGKwpmcrGR+2m1sZE0JwpRlYeowuPMieeDb7jL9RxV55Nf5vsVW2CYD7IdDrYYR9QSe2LeewSq8wf+Yn495rOe80aOZpgvuzci5F82nOfMOzBGQsVyS82Ye/oU0v2GD0n2nk3rsV7HjnmLYCxkh7CEWb3MCyPYfFeQj539EX2a4Lh7vA43yOi2t62RgyIY7hYy4ObZx+22TPt7PcVcA4gN73wdjtczBDOKX66bdS01tHT1E4xaxk9admJllFizaPHBStoHjWtafSY0/KbRm1rHM33tqONo8zMNOaBRn6jp9lrSzcaKb5tnjucfl5qGr98ydhI+GryGUwhRM+i9A7AW348Z/x1wnzAufPQpw8K+3Bz6SthH6T/XpxsR7kyHr8PyePI17mnq93zBe+Vw/Ldzr3ocY2rc09Ir4K9Y0x+qDC+TVv3EC4/2I+J9GKvg41SJ/L5wD17ELgKzNqB1ubQPwne5lfFCwnO7hDXEDM2CokY7dW2zCS66ZHDixlWtId0Ybq98BbjFPG/LZY3E4ozIyxvGi2wTEQ4h/fRplHTXHzKbRw1rWE0l1qOh2U3jEompDSf2uLfFXuITzobza43Lat+NOWMV16x4bq+7ivu3BPq4tYb8CDmQ6tgmBV7ic6cG8fy468r4wOS/kafJTfEoP0QXfgThffOYL44Yb7k3/NI/sSC/Vi77T3ceiuSLw4I83+f3mvsPVvd0ssk6oOvb7v7bCgfNU3m7p8UZXmMErdBThffFM0xSM0egEacdeKjC73gHO2Ac0p0YiyWzoOu3CPnLGcg586Z6WU2jOZZzGbkNq1+NMdpjmd93Wh23WiWhx2pG1Vb7WgWmHmUkVVnmtyvVkee5pPIRo/UEjucgsZq7mleF9pzf8KX1f3gNoO38DrWhFtFxre3HufSScCtDzS3biLB/LH696rOe98F8Rwj9eigEzACe3h0Wx7aWGFvjndO4IV7y62HaLH8akzyIvkJwF7n03cOx7tHFBYbiY/FlHnqdyqKG47HVNY1HA9inUNxy4zOIWIdLmsfNNxGF7a3ja5n7zBzlVuYRZ9Zv23mJLv9sA6ebGxWPtP6jGYPaxKm9/Halo4NcgimuZEVEGd7xO0bXAHdH4I4bajftuOBJj7crG3yDKTLiyhNforSRcYlkx7F4tf2IcM09gxXPd75A589/00bNjq11jVsBLTYsEFshNmYiOl1ePeI4Tagtv32tfCqlyfp4YA/bdn7kycXoaECqAAqgAqgAqjAxFfgT5v3iLDnMXxP0oOTDWclraVx4359Mdmn7s4w6UWMscqJ1kefXvlr8CIgpWjuU5v4eo7xcuDhqAAqcIMpcPny5dbW1o6ODlhDrl/4DAzA8rH98D//wAI0Q0NDsVgMqA2OvjSpGvAeSR/s3kkUY74MS4hMEufcX8WT8E3MEvCPhqBeZyEdzrJKVCLNIfoTVF4xZem+VyHYxcdUqAAqgApcewWSQ3r6rjiS3nn5vBjjywyeQOSoHqK+SBZhLFZTqozmq2+1RdyyxJpaKesgnrjmTyEciYPUXzwFqQIBD7/2f8FYIiqACqACfgqEIf0TLp+evoCHpNeKLfFbT26Wk0gXLwomij0Ny92cU1bAl8G+wPaqg7Jl4C4uiCy+nPYit5S5skpIfb/HCv6OCqACE0qBEKR/GEkf5hIyPLghocFGEKRdG9J7AU/JbK8zZaoFRKxG4iCyiIcH15ynVJ5XmKuOx6ACqAAqcP0VCE96NrWOsASap08PI/tv0BF5bnIkhBBfpDEAc4J68VjCngbbGnLzTLxQzSjuzkEqLsg9ryzCXW1WIj99Zc7Kkw2SUnm+mnMPcl6YBhVABVCB66FAKNI/B+/1mTPh+5IepqmxSS+S4EbY5ihihNBjSWSSm17KYyUNg8BJYlVCX/VMlU7W926WzleJZPEE9WfnVs8L50EqpixLeVHE6zJptn0lwgSoACqQUgp4kX54ePjChQvwv3vs/cO/IqSHIXjmjPcW7BU+PZuNjpD+CestO68n8mTdr+SfxFfpjvGCukQalkyfWEyg5LRUE+VXDYMlEisr4/v3IBYaJIdE0/MT15+sWx/NifOTmsT3re+FwwSoACqQIgooSQ9v0wHmb775ZhH2/C27BRbpJdjLpOeTzpqk9wXGJEsgwkC6GyTkeP0aBGkiGr0EFPMPgnZNzeEnTeUlTgchpZTheJCeVUP50avBDnFXie2ZZLcrPx0PqXA3KoAKpK4CbtIzzH/pS1+65ZZbFixYwGEvkH4h8+mJCb31NumlieVvaJ+eU0HCZ0K85Fxxg1aZjz5zPaLEe9mdj/t0lOnFA92klP5cEkosKaDPPCCMWX2kxNL1civvPkqSgmeYivtT95GGNUcFUAGXAhLpGea/8pWvTJs27bnnnnvjjTdeffVVBnsv0rM58uy37Nzrx9ikZ88+8RE5ubdFPEhMEvHmRT5JLiVsxoJJd4ZSrTRflfXnFU6oVpIy/JaQNrhKCWXupa0+N4nNmppMyvsZH5SoACowuRSQSA9QT09Pf/bZZ9evX79r164DBw7k5ubu378f9iui98Kk9/bMOTrSTy7t/M/GzSQlpTSkVwJJySGRRkoMK3E1FrS7S2F7vPL0qlUI0sMhUlmaUxarpCxLfyFDHOJ/Z2AKVAAVQAWunQJKnx64Ln1En56OyIuT5fJE0vPZcJH05tVTsich0muIrmkBBGRecPBzrLpvS31DQaK+FzKV7QN2rFi09FWqv+asvTT3OkQq1C21XuFr98eLJaECqAAqEEiBMG/ZMdKTYfUkbi+vcIOk9xTeTQivPUFSalCtYZhUOT2qE0WavtpK0nthXimiJv+Ap6w5X31LAuqjrH+gvzJMhAqgAqjA9VQgDOmf4KR38N4ckYekV1/PICgS03DwKDd4GdIh4v4gzQWJXm4Q6qsh0VHfbmCwZMY+Ic5XOkGv6inzl0r0SqPUlicW689T4gYqgAqgAhNYgVCkX2T59Iz0pnOPpPe+zm7oimn1v+rvHnasF344CJWQk3IeSzV8qTkR/gYSOsGEEk+Es8M6oAKoACrgocDEIL3mqar8KchTOEgapSihD/S6ydwZJr0IN2gD3vEBaxLiFALmrK9nwKsfvKyAKUOcb0DBMRkqgAqgAtdcgSSRnrj1AXx6r+dsQqRniYM8sn3TJFofSB/EpKs4Fmx4Fae8UXzP132U/hD+q2bDqyas5pqPdGpu0XiC5OqprxL7NdHz1Z4o/ogKoAKowPVVIHmkjwcgvfQMDYIxiRbi1yBg803DEnjVRIKNpjL8MoZIw+niroZXtsq7xvdkpaP4uWvuQTGNr/hi/RO6r91XQbxVxKyU5xjwxJN+vgmdIyZGBVABVOA6KQCkP3v27I4dO95zft5//33YAf/zz7Zt24qKimKxGKxa6+qnJ731CZI+yONbIof7ge77iA+RQHNIohT3Ire0XwlgX33cd4y7OLZH+RH3h1NJujqaCuvPFw4UGcwro7zcyqx88+dFsEom/Xw9NMbdqAAqgApMBAWA9ID5tra2i9aHvUnf29vb3d0bi3V3dcXa2zuampqLi0t37tyZOOk7nCvcSDxww0lSRXruu5/pbI/Xx/eZ7lWckgdibl41l9JI5+vO1l1DfSlJOVl9oazO7hPkUmvOkR/rPnHlT+JOli3P3LeSUnrf/L2qNPbzle4i/IoKoAKowERSAEj/7rvvMsoD4IeGhgcGB/v7B1pbo01NLfUNTTU19SWl5ccKTpaVVaz9w1qb9GTmHIepfHpIpCE9F8KLXhqqBRFRSQL9gXqGiRDySqnJISCZAtbBfSIB5UpIbbHOSgZLmsBXyaCeGq14Yp5MWQqHsXjWIfR0Hy7JGPx8g9yBmAYVQAVQgQmgACM98+PpGrWDfX39PT299fVN1dV1leery8oqT50uPHr0OPj0MumdsHetWtsRL6Umr2XHn9puKojPfeWjX0ogUUTz1FZykeXGP8pt904JRWICqT7un6Q9yvrrq6HM00tJ5VmLOzWVF+umOWX3GblPyldkfksoC1VeIJbSV8+AJyhWwF0Hr/q75cU9qAAqgApMPAU46UdGRgYHhxjmu7q6q2vqKiqqSkrKz50rOXnybF5eQSRSIpKeQZxYp2kC6flvbp9eCQalLhJdvJ6/mgzZT/oSxVIYObhJT39lVnrSeGFGTw7lr2413NWTZHSXrq8tz9Ctm7tKXvVhKnmduKShMpk+Z/EclSmlC6rXRKyt10WR1HBrKBWBX1EBVAAVmGAKhCK9Oe+9DXvKe4v0TszL0XvpecqoIBoXyL1ferK7gaTEgEQX30e/mF5PLF4BDSQ0Z8dq4iaHMjfp3EWVvG6pIEwKnUYjPj9lZSW9tOJSeJ0pSxBCT6+7IiHd9DebV1a4HxVABVCBCaDAWEgPEBdhL5OerIGj9+n1kHNzQnzKu8Egqakhiv7Rr0eRG2MsN6lufKdXWXqeKc/dN0+NAglRzX1G7rP2Ip+4X3mOkrxizu48pTtE81Wjp/5yi1KLF5FtSxdCqgC/7l7y4n5UABVABSaAAmMkvQh7m/Sc8f6k1zxbpUcwe6qyj4gE98NXTCk9qd2KS4e7H+7iIe7Eyke/V6EhqiqdsvvU3AKKe3zvMGWVvE5Zo5V0yuIFkuqsEUE6Snmymssh3hteJz4e5+ubp+9VwASoACqACoynAmFIz1ettZx2xvvE36f3xSSHlvQQF5EQAp9uWvgyRkMRDf+Co1EPVzGf5HJFn5u+/prLF1wTUVh+FfjhiVYAckvojKQ/rRDFjecfJ+aNCqACqEBSFBBJPzJyAYwuRT/U0dHV1tbe0tLW2NgCw+8dI/LsVWt937Kj7+GZY++9nukc52zDC8PsIc6NP9M1vNE/x3l9OGB4evcesfLSgZpS9ORw56nfo2QY3+ne4BJp7hRlnqIOymyV4otZuU9cunZK0UTZg5yOXhDlWSfxfPW3gUZz/AkVQAVQgWurgEj6ixcvTbn99p//7GcLn32W2ZrVq/fs3l1b2yCSfsFYSe8FDy8yJQQzzaM8IBj0xHIjyk01iZRBIMex4RZBUx8pcRA6KhGrv+dY/ZUHeqmt18RdnFgE32aZSKcvihnwgorFaW4P6aoFPF+lOHo98VdUABVABa6tAhLpH33kkY8+/HCv9cnOzj5z5oyL9AtjIwbpglfOnMPfuuMb3SPxnzyxyDwv6cEtPl6lx7r0k/iryACvDJU66h/0yqe2njQSeKQcpOLcVXXXR3MIOyPN+fKfgmuiF4QVJ6rtWwd3As0NrbyO7rNQnpdSiiCno6lP6PPV54m/ogKoACpwXRUIEb1f8CtCevFNesZ018w51ov2DtKLZ+tLNQkbHAwhkMbL5eiSauIFieDUTAhyEqiUN4G+Sr5UC1IfTSZuoUQwa65jkFMTL0dC6TV/LUEEGafzva5/w1g4KoAKoAJ6BUJF75NF+kQvTpBHuZRnwEPcyQIemOgpYHpUABVABVABVODaKhA6ep8Mn545c0pTqhCCvvpD+K+ajWt7PbA0VAAVQAVQAVQguQpci+i9PO+9iHZ+NkEoHiSNKA9LHwT27pSJlpXcy4K5oQKoACqACqACSVIgVPQeZsP17qcv64yLBh34cj+9G6IBsSo2EZTNBTfm2R7f/JVV8i0iSdcAs0EFUAFUABVABcZPAYn0Ly1dCq/V5VifkydPlpSUuN+yA3YDwSWm0xF5X1wt64pzK+2Kg3VfEMbeS9xVwtvrdH2BzQ8M0pjQtBvEw4MXOn5XCXNGBVABVAAVQAXCKhAiev/wr54jpKcQF7EOlLdJz34ORHqp6hqyBoSuVzLlfrZT/N/dFgkrLh6HCqACqAAqgApcdwXCzYbLSS/y3ia9iHl/n55pwDEs8Ri+asytn/twMY3Xr1LpYrKAzYvrfiWxAqgAKoAKoAKogEqBMKR/wvbpOdPBuXf49KKz7xO99yW915VTtgmkxG5Os3aD2LZQbnu1PPA2QgVQAVQAFUAFUkqB0KQXUc62rzfplboH8ciVadytgZS6rlhZVAAVQAVQAVSAKXADk54595Lx+8KL9Cw9flABVAAVQAVQgRRRIPmkL++KSzbW6L0SyQGJ60tlMYGUWHlswHJT5PJjNVEBVAAVQAUmvQIhSX9BpjnA3Yzel8fitlHq+5Neg9sxXgE96fVo920ljLFueDgqgAqgAqgAKjD+CnDSw7L0AwODPT29sVh3Z2fX+fM1sCx9JFJ69mzR8ROnc3LzI5GStX9YG4vFHoYReZz0AtYJ6S99cbUiFjetK17hS3p2hoypXj60mEZK5gtjX9LzBErquw+HPb6Fjv9lwxJQAVQAFUAFUIGACjDSj4yMMMx3dcU6Orqi0Y6ysgpA+9nCopMnz+QfO5Gdc9RNeuA4MYvsQHmB9BbmHT69kugiOJVk5aeipLIvy32VUMLbq/GBpPfVExOgAqgAKoAKTCQFgPRbtmxpa2sbHBzs6+vv6enp7u4Bt76+vqGmpq66praqqrqysqq8vPL06bObNm0yffoRM3ovwt4iPeO/0FvviN4rXWdREQ34x4P0nNxe5aIHP5HuV6wLKoAKoAKoQKIKAOlhyluAPUTm9QaYP3LkCCc9p7kJ+664SfpKHr23Nnqk2XDdPrpUay9/WnlyoX16t3eu8eMT1RXTowKoACqACqACE0MBIH1ra2tHR0dvb2+/8BkYGIBv8D//gNM/NDRESb8I2G13x1OgA9+d0XuB956knxgSYC1QAVQAFUAFUIFJrECySA+wt316wD43+AFJP4lvIDw1VAAVQAVQgQmuQFjSG8yPF01NekiBpJ/gNwFWDxVABVABVGASKxCa9BLm7ej9+W4DrLI7zg1JP4lvIDw1VAAVQAVQgQmuQHjSCzQ/3x0HM316Rnq2i1mv14i8Ca4NVg8VQAVQAVQAFUh9BcKRvvcCo7kD6BLprd8wep/6dwmeASqACqACqEDqKhCO9D1A+pgH6atiRlW3ZTH06VP33sCaowKoACqACkwGBcKRnvj0AHST6fGqbmKmT29ivofAHqP3k+EewXNABVABVAAVSGUFwpOeRu8J1oHpPXEwk/TV3QYzy7PHfvpUvkGw7qgAKoAKoAIprkB40ltBepPsbtJz5PfhiLwUv0uw+qgAKoAKoAKpq0Bo0jOPndMcNiyfvideDdZNjW7j2PvUvT+w5qgAKoAKoAKprkBY0psoh+55BvSanvhlWMsO/sFWTbdllPTo06f6XYL1RwVQAVQAFUhdBUKT3mQ8JT0hu4P0lPzc+i7Gf/LEotTVCGuOCqACqAAqgAqkrgLhSA/sZoF5EeiCTy/+0BtH0qfu/YE1RwVQAVQAFUh1BUKTXmQ8bNdynx62mLG9YEj6VL9LsP6oACqACqACqavA2EnPyW769HW9cbBay2AbSZ+69wfWHBVABVABVCDVFQhNeo5y2GBwd5Ce7SLIR58+1e8RrD8qgAqgAqhAKisQnvQ9Jso509Wkh5/7cUReKt8iWHdUABVABVCBlFYgNOk54J2kH71a3xdnxn9A0qf0LYKVRwVQAVQAFUhpBcKRHtjNOc7JfnkU3qcfvdrASN9rG5I+pW8RrDwqgAqgAqhASisQmvQiyhnsCemvUNKLBj8g6VP6FsHKowKoACqACqS0AiFJf4mgXWK6SfrGvjiY+Fv/JZw5J6VvEqw8KoAKoAKoQAorEJr0Eubhq0n6pv54o2DwwwCOyEvhOwSrjgqgAqgAKpDaCoQj/cAl4rSLQIdtiNyT6H1zfxxgz4z595AaZ8NN7dsEa48KoAKoACqQsgqEJj2DOGc6bFikH4g3g/WbBj8MIulT9v7AiqMCqAAqgAqkugLhSA/sFhlPyD5gkb5lIM6N/YCkT/W7BOuPCqACqAAqkLoKhCT9Zeq3CwZwN3361sF46wAxzvvByxi9T907BGuOCqACqAAqkNoKhCa96LrDNvDdIj3FPDf4DX361L5HsPaoACqACqACqaxAUkjPsM5Jb7QOmNbSb4ANXjJwRF4q3yRYd1QAFUAFUIEUViAs6Y2WAQJx8r+FdUL6z0evtg0YzDjvhy4j6VP4FsGqowKoACqACqS0AqFJzzlONgaNtkEDKE9IHx00wAjs6V4wJH1K3yJYeVQAFUAFUIGUViAc6YHdAHjTe7eAbpK+nZJeNCR9St8iWHlUABVABVCBlFYgNOmZuy4C3SL9kAGw5wYphjF6n9L3CFYeFUAFUAFUIJUVCEd6YDdnPGe6SfqOIYNbO1B/CEmfyjcI1h0VQAVQAVQgxRUITXoGcTCOdUp642rnsNEBJvwwgj59it8lWH1UABVABVCB1FUgNOlFlLNtQvovKOm5sR+Q9Kl7f2DNUQFUABVABVJdgXCkB3Zz0nOsgz9PSN81YnQNE4Mf2AaSPtXvEqw/KoAKoAKoQOoqEJr0ouvOgA6UJ6SPAem50R8uXMH36VP3DsGaowKoACqACqS2AiFJf8X22Bnmge8m6bsvxLnFRuJgF67gvPepfZdg7VEBVAAVQAVSV4FwpAd2M4gz66ZmkX7E6KYG8GeGPn3q3h9Yc1QAFUAFUIFUVyAs6W2OM5oD2blPb5Ke8R4MSZ/qdwnWHxVABVABVCB1FRgL6TnK2QaQ/v8DIkHTRDLeYJYAAAAASUVORK5CYII=" alt="" />

          图6.1  程序运行开始界面

2.输入顶点个数和边的个数之后,会提示输入村庄名称,如图6.2所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqIAAACBCAIAAACUxE8VAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAACbjSURBVHhe7Z2Jd1RVnsf5C2Z6FBVRNrVtR9vTM93jOXO6Z86Z6ZnplsYNezhDG9xbFKTbpZV9RzYJhLAqiuLWggKiIHsIgYSwYwiEhBCWJBCyLySAtolz77uVy83d3n2vilRIfev8Tk7Vq7v8fp/78j51K0t12fTNuUgcOrfJi8JzDQuWfvpA0lDnGPJAkk/0SxoSIB4b0s8tfvfYkKsdfR8bQuMPCBBQCbzQd+AL9yOuEQJksa7EH17oSyM+Z3VMrlqmi2Rk8D+88LuBz/cdOLjvwOdI/I7G4H4DBz/wh8EPPPb8g0kvPJQ0hMYgSwx9aBAPr1nSkAdpvEDjsefJOHQ0FmRMb1gS9HjbZ/sNfE4MsRdrSfuSOwOfe+D/nu034Jl+//tUv98/2e/RJ/o9+ni//oP69U8i8YAuHuyfxCLy7CNJD3jRzxysQSSk7m3HIYP8zou+NAbd3//x+x994v5Hn7z/90/d/79P3z/gmb4DniVgSf4PDxrS/4lhv3/6pQHPvjpw8OtJQ0YmDR05aOioQS+OfnxYO8V7y788f6Hl8Hk5Ln73Q5ctueU0Dl+JM5VNDz4+rAtujMDEWINQB4z5FFGmHDQfe3vts+5TkJZiqKV1fJ5RLge6gwAIJBiBy5cvl5SUlJWVVVdX1wq3uro68oh85bf6+vqGhoaKigryeqKy0aD5bXk1UhRXXXr4yZcSjKq53KAO8xVYIC1JklMfion7NmYN+M2iT1MVUnc2VFBEli72ArWrpJ3ddxVwfoMACIBARyUQY81vL2gQI72gobjm8iNPv9pRy79qeZkE4ysM3kCUqN2gvj4WTSxWLCVjeeibtuha1tiSlTYHsXDLsoTTsEv+YglSAo7dr9rZhIFBAARAIDSBMJp/0byb31HY5EVjRmuU1Hzb/5m/hM6vk3SU5G3XNqtZVItJgUGdJ7V3f+jiOdbG19amSUUm/L66/C5YfCVtKkcaXJuSC4pOctaiDBAAgc5AIITmye8BGN+031l0yYuLJHaQONFUWvvdo8++1hlQRVODpEA+lMUZLj5rH82bbKcVtqlSVrKjXy2oXbCI3dUZfXPQ1hXN6qMvCIAACMSPQIw1n3XyUiaLIhpE9omreW4L9Y7deeqz2hGYfXljk4wl51mcbdE2H8TkSKZwdQRpOpcTXTuFmjab0U5SW6w2B1OeYjKW2l3qQhsQAAEQiAeBUJofVUF+Ba9M95v2guMvZpI9PdnN13z7KHvTXtRAItznHmJ6sDtJ1IyqLm1fiSE/eyxmkkQV6KFdqFKxvqeyVK9kWZWGvTpLezETqV5tkhZ64iJ24vPZd+3QAARA4JoiYNL8hQsXmpqayFf1N+3J3+9VNDbn6DVf1JRZ1ETsTqOwkfyQvqTmcv+nX4kwMV2OO+txrfzssjEZXbIsa2ZvLGkp3EOLgNlTqoBdbKr2MpUjfTuFm1FKVUUh4WUNTCEmz9uIeV7r57PEHA9BAASuZQJazZM/nCOOv/fee0XT8z+oS2rVvGR6+nfzOwov0Dh+IeN4Q0YBjeLqy4+QP6jztUUna6DVmOoS9dThGnPxmdjY10mq2yQf2x/6Ji9l7qJJKSVt7RIiFyyqcbXfooHqda/umj6Tr+VrGXIHARDQElA1zxzfs2fP++67LykpiZte0PxItpunIfyTHKr57cdq069ETXpeTXHlxYef+FNkbvEKqF6L2bOd7LjWZFKZUsmiUFlLTiaQmdQF9zWQNhN+kCdjt6aYpGRHbUrS+BIxqYv74L7Fiueb1NgxJbFXZzpvteuLgyAAAtcmAUnzzPF9+vTp27fvqFGjkpOTp02bxkxv0jwxPZM91fzW3PKtuRU8thyuOFPR+GDS0DauEr3Vie+LupJsJ9laK1dJQlr5uTuPTSHNG/qhNn+ecKCsJDJSnupEgQaXvicdRzMthzqamHynuX9tXsiQNQiAgImApHli9AEDBowYMWLp0qWrV6/esGFDenr6+vXryXHtm/bM8Syo5jceLPGilMaBsyROnW8g/ww5ERdAFZJWUSYVBWos2lHr4Cg1bxekZXatxX09aunFXkywBr6DS1U7tvdNLxHPZtQMAiBwrRLQ7uaJ1KWbuJvnv4InOj6i+bW7i9btOdkap9btOVV0ru7+AX+8VvGEzlvr2hDm1uqZZ+ViX6203K3PnaqikGa3J2NSrCRssTRxatHuavla2mqNjvy1qYZ4iRD65EFHEAABEIgdgTB/UEd/Be/KJr7Nbn5N5rE1WflrsgrWZJI4TqKwtOY3jz4du4Sv2ZFclGxxnrZurWhNzvNNwFfbdvYhNG+q16VY0sZXvfaKJOuLryosLxEsLymu2XMTiYMACHRiAmE0/6JZ86syjqzeQeLo6gwSeau25xUWV/33I090YoJOpbmoV2sd5h4p+JRSF/G4r9RVTapS1M5uysf3VQLvqJWoZS4VsT0xk6TtTILm77TwaAQCIAACcSYQSvOjjbv5ldtzV2YcWbmdxufpuZ9vyz1eXPlfDz8e5yrjO73J8aqNgubJRmbOs7iQtbHffBv4DaD/G3rfXu3WIFCBgRq3WwmYCARAAASCE4ix5r3d/FHytVXzhwvOVPzXQ1bNWy6pJnv51hn6Mh26oykldcCYT8GmDjGsY5cQJTiOHOKVR4hk+CyOWUUzhe+ZiQYgAAIg0L4EYqz5NZn5X2Tlf7Ezf/WOvFUZeSvTj3i7ee9Ne9NFNpDmWWOX67Vvm6D5kPYuIa1fNM4wTac9RXzrVXvZu/BnLXdMmbDMLTepNBUabxBbnvaU2LNB67UWiidBAARAIL4EYqz5tXtO0thd9OWuQvJbeKt35heWVP/Po09FihQvoC4Ok1QhPrRbRLpemxizQUyZSKaxJMPHD9GGp6qmYRpWW44LELEjr91yAoptfOGL+Qc6qdVVYIui3twPmvraKQWqN1CNaAwCIAACcSJANL9v376VK1e+3fa2ZMkScoB85bfPPvvs4MGDFRUV5INojT+b33CwlMTX+4vX7T29dvfJr7KLTpyt/e2AZyPVuV+mJedpr/u+YgvRwNJFesq3FqkE3l4tTVx7dVjfKlh3dTp2RHsTj/uOr01JnE6aQgVlacxXlvUSKanDatHZeXI4fLSY12tgjMMgAAIg0BEIEM0Tx5eWll5svbG/mK+urq6srK6oqCwvrzh3ruz06TPffHN41apVPprffLiCxKac8xsPnaO+31d8sqy+78DBmlK1WjIJgztAEgZ7aLr5XtAtflL7ikfU5H11wksQJw06S0yKtU/KCzEtkMRBhS+N79he4uObpCNPkp7vUKxN6HrNJyCeAQEQAIG4EyCaX7x4MVM8sXtDw4W6+vra2rqSkrOnTxcXnTx9/HhRzuEjOzOzc3OPLly08IrmvX9oL/8XvLS82rS8mq1Hq7fkVm7KKd/4Tdmp8gsPsH92a7qZ1GVRmgs2rQbsHe1C4s8yH/Cby30uG6kou4Fc/KRNI1a0RYZi+eqkjIkavHDWRWLF26t8fGvXrq9vLzsu93othPEUCIAACHQkAkzzbAfvfexsfU1NbVVVdVHR6YKCE3nHCnJz83bv2Z+RkUV2862a9/5uvvWja9r8e5ztBQ0k0o/VbyO+P0p8X3W6sulB8tE14gWdXdMtISpBtIs0iKQNCatWA+JVno2mve6Lk0oNpKckr5gG5CVrkxQPakfQ5uOI0TS4Ss9Ui6VkqYu4cHawptlNlWrbq7NbluPq1SutKR6CAAiAQEciwDXf2NhYX9/AHF9eXllw/MTRo/k5OUcOHMjJzt63fXvmoUM5ouYPk8+bZ9H6IXXeJ9QdbySRnn8hPZ+Yvp5s7s9UXXqIfBCtVgAWEOrlXisbrWbEuSwNxOs+aSaFmrCvVCSR+FpTFY9pBJP8fMsXXeuYP2smNlbvm/JhHU2Fu/CxjyyeMNqW4sH2qVdMCfdBAARAoOMRCK15+mHzYrCPrkkvuMBiW0FDWn791mN1Z6ovPfTUy5HCJWEwJYghaYk/JRpC9JB6KWcjqGbSotd2N5lGTZ5NZJrLXp2apyVzl5SkAk1kxGah24hLoM5rZyIusZqMqVKOWqSqDmWv6GrUqz2vcBAEQAAEOgyBaDQvmZ5qPu1YfdqxOhJb82q3kDhae7rq0oPa3bx6zfWVLr/Es4s+/6rSFIeyXNztOUjPagXDpra7h7dx0ZI2c35QTcl0JoVWmlqRiF2sxURPWhrTWkjQ1AW1F2sHpcViPxPEfNh9ab209bpwNq0RjoMACIDA1ScQRvPso2vYz+aFDT3V/KbDlRtpVGzMqdiQU07iVEVTv0HDIoVIl07LhVW8wmq1oVpBuiiL7EzXYotItNd0aUx7G7ul2FCOI/Bm6pgqQ37E9+zxVZS0Xr5IxUXR5qydUdtLhROOp2/OpgaO0/ky9F0FNAABEACBq0kges1z2VPNr91XTOIrEnsjcaKs/rf88+Yt2pAu66K9JCOarMAx2d2pXtbFAaW5fCVhkYGjJ6TVVRHZoUVzctgVZc/fAtmdiUibrwLvHjQB6RRSycS23mjIoy8IgAAItBcBUfONjU0kvI+WbygrKy8tPVdcXHrqVDH5ZXvxV/CSLB9E+1nGURIrdrRGxtGCkspf938yUo5kaPJQCpOD2RWcB7+gW2Rj0Sd/ig0o6UE9ItqI39c6Qzxot5Q6pv2IfTr+rCUB9ZTSjqnCkfho4dsLl9ZOuzQidpdyfPlf1Xrtp4E6NY6AAAiAQJwIiJq/ePHSr375y2efeWbkiBEsUufOXfPFF4WFJxXNN0t/NE8e0t38sq938Xj/613vr9919OTZX/UdEKmOXe7dDScKJvSl3zSdai/piCQS1StiOeosotvUltr2akripNoE+Hnjwkc6ydQB1bNQmznraOpu4abtIk7B76tTBOWprUU9qDIxcXY5AXzHRwMQAAEQaF8CkuYHP/fcB8uWfdl6S0tL27t3r6L5kRWNzfS9evXf4yxYvi4SK9Yt8OJQftEv/qNvpCiTtCzaUO0lNjYNqIVot5rFZ2w0VTPaI3xqaTo1VZNOTCOwHHzHd2diB8JLtsyrHcF3WM6Tj2xaZXHqEDyl08A3MX4OmBj6jiDNiIcgAAIgEG8Cod60p5oX/2Ke/ek83c3PfOejme9GYsa7H5HYl5t3z7/+u6ZMy1VbbC0JgF+I7c4zYRW7i740Xb7dlSmqy2VRfYVhT8m3u0s+lkFUUKyx2sXliGU5tGO6AJTauAC5SvWGyBZdQAAEQKC9CIR6096s+QkpCyakLiQxPnXB+Hk0dh385o5//kUMynG5joe49DuqKwYFYAgQAAEQAAEQaG8Cod+01+/mh0+fMXzGjOEzWcwkX3fu29vznrv1ZbEtoxra1jHXPB/Qcqe9lwPzgQAIgAAIgEAsCcT4TftXJk94efKEV6ZMfHnKBBbbd+/qfucdPjp3UbhLG5EMa2/vJbYRWwadK5YrgrFAAARAAARAIGYEYvym/bBxo4aNHz1sPPkaifRdmTfd3vtKvqpBHZ1KmmlDiyKQs7UpiXPFjDYGAgEQAAEQAIF2JSBpfvKkSeQv6La13rKzs3NyctQ/qKskv4J3viW3bdBfwXtx3HAa42kMHTd86PjhaVk7buzTQ695d22T/o6vBrQtfUXOM5G6u08qrZpaWrsuKyYDARAAARAAAUogxJv2g7x/j3O4nEauEBf/9kOXoWNfF2PI2NeI5rv2vtWoedWOpnVxNK6pmfY4Oyh+ja3mcY6BAAiAAAiAQFwJhPtnt5WtmhdlTzX/4tjhQ8e8zmLImNdIpGUSzd/io3nuYEnG6p5YPKKCU7uLbUzPSrOLzRxfW2gzCd03ricEJgcBEAABEOhMBMJo/sVRkubZtp5p/nUSVzb0Y17bRnbzvaLQvAm29gWB1FgVLXuVQG4ml0vPhlY1n6gznSyoBQRAAARA4FojEFrz4tv17D7V/DD2s3kSnu9J0Dft20HzWu4ukta2UV8KBF1XpnkeQbujPQiAAAiAAAjEgkCsNT92+LCxEcezO3Q33/Pq7+aDal7SsLT5Nmk+3B49XK9YrC7GAAEQAAEQSHACMdb8n8cO/5MXxPEsotW81seO4vTdzYsNpMamXb7vmOoJ5Zhtgp+JKB8EQAAEQOAqEAip+aaWI+Vy0Dft/zxmxJ/HjPzTmBEkho0ZTiI9a2fXHt2vZK6a1eLaKAu2K9nu9RA6F7MV1Q7NR7mO6A4CIAACIBCWANc8+Zj5urr6qqrqiorK8+fLjx07Tj5m/tChw/v2HczatWdb+o5Dh3IWLlpYUVExiPwKHtd8RcuR1vA0P3rkn0ZTx9Ov3h26mzdpniXNhKrVKj+o3jF1kVxr4SKZWO2ophRI2KxxoC5hVxH9QAAEQAAEQEBLgGm+sbGROb68vKKsrPzs2bLc3KPE6/v2H8zO3rtj5660bRmq5o+Wt9CoiMQlbzc/MhJjyR1q+iu7ea3ORZVqtcqzDmF67UsHCYNWw9pU2QsLlzFxroEACIAACIBAxyBANL98+fLS0tL6+vqamtqqqqrKyiqyoS8qOnn8+ImC44X5+QV5eflHjuTt2bPvk08+iezmGyPv2Iump5p/ecwoGmNHvdTq+zZv2kuOdPQ6I3U1NM+1bXq1Aal3jNMUWYAACIAACIQjQDRP/qMtMT15Q94exPFbtmzhmmeCJz+hj5i+vIVq/tVxo18ZN4oEMf3L40a9NHbk9qzMNm/a8zRNBjXtpLX12TVseVbdl5vmhenDnVnoBQIgAAIg0AEIEM2XlJSUlZVVV1fXCre6ujryiHzlN7Ldb2ho8DQ/uqqpmb9Xz+7kVTDNjx/z6oSxr0wYQ2P8aBLbdxk0rxavFap60N27ji2jmaIDLCFSAAEQAAEQAAETgSg0L5ueav71SeNemzTuL5PG/mUijVcnjsnIzqJ/N892zzykdOxPqY0d19Ouef6s5Y7jRGgGAiAAAiAAAh2SQEjNNxLHN5MdvBie5t+Y4MV4Eq+9Mf4vU8Zl7M5q81/wCAWmVUntWiW7H1Th8lks3MU24lz21wcdciGRFAiAAAiAAAioBEJqvqk5r5xovo3pqeZHTJs4YvrE4dMmeDHx9akTduzJbvMJdaLm+X3xDs9RfB3A7rObdFy7qoGcrUrdZQqcTSAAAiAAAiDQ4QmE1zxxfCWLlmNeUM2PnDFl5MzJJEbMmDx8+qTh0yfu2BuF5kV8TMaSklVDm14xSCuhvobgryQCvUQwLbB2/A5/NiBBEAABEACBTkYgGs0fq2g+VsmiVfOjZ71BYtSsKSOI6b3YuXd31z7e582L5uMy5k5Vha01uq/mteLXul/KQZuJaTTfs4C/aGAtpYe+3dEABEAABEAABGJBIFrNC6anu/nRyVPHJE+NyP5NsrOfkrlP0LyYMTNoIM07vhTgs9hfE6hTSymZXhy4cIfmXSihDQiAAAiAwFUmEE7z1U3NdCtf0ZzPopKE96b9uDnTSYydPY3IfhTd1r+RuX9P5GfzWukG0jxjIY4jdvd9EcD62l3u++Ij3HpI1g83CHqBAAiAAAiAQEAC4TUfebvec3wVDar58SkzuenHJk8jkRWN5pkdefDaLC8OxPpV8at0tG3UlwIBsbZpDsdHQw99QQAEQAAEoiAQXvORTTzVfAEJpvkJKTNJjEuhe/pxs6ePS562a//err29z5uXhK2qVDKu5WH0mpdeQEgmNmk+hLBDdIliOdEVBEAABEAABEQCoTXvvVHvCb41qOYnpc6aOPfNiVT2MybMppFFNN/L0zy/iRIVXe6ueWko05JKA6rN3GdnfYM6O2h7nJsgAAIgAAIgEFMCYTXfUlBJg/xInkRBVcvxqpbLRPOT5yVPTp01ae6bk1JmTpwzc3zyDLqbJ/8Fz6J57tp21nyI6YKih+aDEkN7EAABEACBmBIIrXlqdyEimn9jXvKUVBqTU2ZNmjNzYvLM7P375I+uYX5Vv/KDrEK7hrVtJDTSCOqz9lcYaveg2g7aPqZLi8FAAARAAARAIJzmay7SHTzbxPOgu/mp82fTSJ39xtzkKSmzJs9+c/eB/RrNi37V+p5pXgp1uXxF7rvCWhOLKYkjQNu+PNEABEAABECgIxEIrXlR8Ow+1fy0eXNoeJp/IyV5yuxZe4jmb+1OS9bqXPQ946IekY5LQ1lo2l8E8FcS4qSW+x1p2ZALCIAACIAACLgQiF7zhVUtLKjmZ8xPmZ5KYs70uXOmpswmQTR//S2e5t317JK4r8IlYUtjku7SCOyhOqzLRC4Jow0IgAAIgAAItDuB0JovrG7hcaK6hQTV/Mx5c2ekppCYnjJn2pzZU2cn79m///ruN7d7XZgQBEAABEAABECgS3jNV1G1i0E1P2te6pupc2fOTZmRkjJ9zuzps2fvJZrv1g2kQQAEQAAEQAAE2p9AaM1Ljo/s5melppJ4M2XuzDkpJGbMnrP3wIHrb4Lm239lMSMIgAAIgAAIhNzN1168so8vqmlhcfn7H7rMTp2fnJqaPJea/s05NPbtP3DdjTeBNAiAAAiAAAiAQPsTCLebJ5ovqhaCa37u/AUp8xfMSZ0/e+48EskpqfsPHLzuBmi+/VcWM4IACIAACIBA2N38Jbp9P9k26G4+dcHi1PmL5s5bQILIfs7c+QcOHoLmcaKBAAiAAAiAQFwIhNzNX5IdT5RPNT9/0VvzFi6et3BR6oJFc+cvTJm34MChQ9d1xW4+LouLSUEABEAABBKdQDjN13maP1XbJr4lml/01jsL31qyYPHbCxa9xZR/6JscaD7RzzLUDwIgAAIgECcCoTV/imi+puV07ZWgmn/rnaUkFi95lwRV/uIl3+QchubjtLiYFgRAAARAINEJhNN8/aU2gj9T10KCav6d95YtWfr+knffI/E2Uf6Sd3MO50LziX6WoX4QAAEQAIE4EQip+cvU62IUM82/t+zDpSTe/+BdEu8te2fp+4dzj0DzcVpcTAsCIAACIJDoBEJrnnhdjJJ6T/PLPvpk2Ycfv//BR+99EPF97pGj0Hyin2WoHwRAAARAIE4EYqL5kroWElTzH3781w8+/mTZRx+/H5H9R0eO5kHzcVpcTAsCIAACIJDoBMJqvrm4rrm41vta11ziBdX8x5+u+Pivy0l89MmnRPkkjuYdg+YT/SxD/SAAAiAAAnEiEFrzTO2RqG8urW/+jmj+0xWfk/jr8s8+Wb7iE0/5ecfyofk4LS6mBQEQAAEQSHQC4TTfcJkKvpSF5/iI5ld8vmrFZyuXe0F9v+KzY/kF0Hyin2WoHwRAAARAIE4EQmueqf2sEHQ3v3L1ms9Xf/H5qi8+W7l6xcpVxPr5Bcd9ND/Rr3SxgW9jaTB7e+2zLlO4tBEzCdqe9XXpZWoTTV975i4jOyavluk4uN8pg+dBAARAAAQYgXCav3D5iuDP1TezoJr/4su1q9d8RWLVF1+SINY/XlgY0XxoIUkdA40TVPOsvYtsXNrwsyxQ40C9AtFQz3rfxNQGvl1UeVu+28hoLAL1wrcvCIAACICAG4HQmj/X0MyirDWo5r9cu27NV2uJ7L0gvv+ysPDEld28eDXn13fpjq+KLJoJ6iSpvfjQRWYubUg57pWKtbPBfacwNfDt6KJV7SAuI2tLlqrjbdSq3c5dtAIBEAABEPAlEFrz3O5tNL/26/VfrSPx9ZdrSRDlrztRVKTRvPuVndvOJEu7m9VeXG/iU1qh+vrMtwEbVm3m29FelAs9k6EtGKVU3dFJZ5lpau3JKDXWpud7FqMBCIAACICAgUA4zTdevrKJP3+hmcV3zT90Wb9x09cbNn29fuM6GhvWfr2h6OQp/c/mHS/oqgbc19LXr7wBuyOlZJI0T8Dd1uJE7r0sE2kdbFK4e8IiWy153+XgJC1DmZ7SkvHF5X4+oCUIgAAIJB6B0Jrndid3yr34G9H8xk1bNmzavGHjZuJ7pvyTpwyad3EP85ajMNQB7X2j9IfWZ5YTSK1F29iUVUyOq4NYIATVvFQg726SN2vPg9AIlF7ifa+iYhAAARAIQSCk5r+l23dmdxYVjZ7mN29N27wlbdOWrSQ2bt5C4tTp03Q3L17N2QXdEqKwxUu/o1mlZnZBijaSktSKR8zN3kBbheRCacW0ZpVmFLtYRtNWHcijajIhupvgq0WpCx3idEYXEAABEACBtgTCab7p25aKxitR2dhCgmp+67b0rWnpW9K2bd5Kgvg+7fTpMz4/mzctiSp10xHJfJJ97cITNc/GEWexWEpNRi3EpGH1uLalVquSDi1TaPORDvoWyNuroCTOLtOps9tXB9+uIAACIAAC0REIq3m6fRejku3m09K3p20jEZE98f3pM8V6zTM/SWGRCveZ1jdqR8sR5icxRGOx8cWvdoGZRGUxKBuQJ2BaQvsIap5ie1NWau2WJXBfHakEvlim0kwEXODbx8SzIAACIAACAoFoNE/ULgbVfHrGjvTtGSS2kUjPINY/U2zWvOoGk1Al6aoWMSlT6mgaX5Ife8i/WnpZ2kgmk5TJxrff7G3EDHlL9Y44hTqgZQrpKfGhZRa1TPGImozEWfuQ92JD4QYCIAACIOBMILTmRcFXNTZXNXm7+YwdO0lszyCxgyifyL64pCTMbl57Zbc7jHQxacwuM4tptB2jkaVYl+8iuTjYJOOYZ24fkLtcuwqsUm2q4kF1fdUuFia+PNEABEAABBKPQDSaZ3bnQTW/M2vXzsysHSR2ZmXszCTKLyktNWpewu1rJq0SxEFMztM6RjST2IANIn71zdPiHtNTLrqKpo0vTFaUe+aOA1rG1C6f+8HE++ZExSAAAiAQPYFwmr/4XRvBVzc1k6CazySap6ZvlX1mVmnpWVnz3KBctJJxxbK0GjApSlKRpa8qcjEZ9VmeUlBtB21vqt201IHGVxvHS/MqT9NiScctCUf/3YARQAAEQKDTEYhe88zxEc3vyt6dtYtEdiaJLBK7Ss+21Ty/TDsqR736O4o/6PjaxCyvG6RTIZBu+csI+/nkojT3ebUt7Zonz4qhZhtoTPfGlqJcmHS671IUBAIgAAKhCYTWPLc7vXOxueZi8/dkN79r9x5ueiJ7EmfPnvN/055du301wJRj8St/NoT8pL5qSr6CMeUvyZI/9F003xm10Eww+XFTPlJi0uziQ8t6sZTcS9bO4lK4Lz00AAEQAAEQCPsJdeRN+zaab2rVfPaevdm7SRDZe77P3t1G8yJxi0VMzRyv/vZmpnlFC7IEVLH5njFMb5Yy+VMutYRuo3Z0Gcq3Ope6JG6+Xdoh1UB1oTEIgAAIdC4C4Xbzl75rriFq9+zOg+7md+/ZS4LI3tvWU9OfPSfs5oM6QGIdc1d1rrVENSAAAiAAAiAgEQir+Zaai3JQzXv/6db7Z7ebt7L/bx/5Z7e+u1hHhTs2wzqDAAiAAAiAAAiEfdO+6Vv5v+BF/qf9s88PfWbwkKefG/LUH59/8tnBJIjy23xCncnTjv52bIalBQEQAAEQAAEQCKt5IvVvyppzvDhMvp6ncfG7H7rc+dN/+vHdP7v9rntvu+unfX5yT+8771667MPwmidS9w2sIgiAAAiAAAiAgIFAuDfti2ubt538nkS6F9tJnPr+wrctXfrceU/vH9/d8467etz2k1v6/Lh7rzveWfp+m0+o49omCZkUznMNtHeXRsOSgwAIgAAIgEDCEwin+TO1zWknvk8rorHNi/Si7xsut3Thjr/1tjtv6f3jm3vdvoRp3tfcWqOrB03iZ44XZwn0EiHhzwMAAAEQAAEQ6JQEQmt+a6vmuemp5nvd8Y9kH88d360n0fx7bf5u3uJpFXA4zfNtvWR9iL9TnsIoCgRAAARAwEwgvOaLvpdMTzXf4/a7mOPJ2/XE8Tf16PP2u4rmHTfuJOkQmueOVzf30Dy+E0AABEAABBKMQLSaF966p5qnjvd+JE8c363HbTfeSjS/NLKbZ5ZVvzLiFveL5lbv8+7SyJB6gp3KKBcEQAAEQEAlEJXmyYae/Hi+1fRU85Ljb7yl99vvmDUv2t2ieTFrk7xF/bNhoXmc7yAAAiAAAglPILTmt3iOp0E075meap7s48mv3ZF9PHm7nji+a/debzHNc+lK9jUd53t0aYV8NS9t7sWHEH/Cn+4AAAIgAAKJRiC85k98HzH9iYjpqeap470fyRPH33BLL6r5Ja27eZO5LcdVMds1z1dP2s3zvX6iLS/qBQEQAAEQSGwCUWpe3NNTzUuOv75bj3bSPFlF7nLJ8Ym9wKgeBEAABEAgkQmE0/zp2uYtZDfvbei56anm6T7+1sjb9dff3PO6bj0WL3k35N/NazfueOM9kc9W1A4CIAACIBCQQGjNbz5xxfTsh/RU86LjyVaeav5tP80zc6v+5selbbr6MGDNaA4CIAACIAACCUIgOs23Mb2nee9H8mQfzxz/Dzfd6q95i+MTZBFQJgiAAAiAAAhcHQLRaF7c0JO37qnm2a/dccf/6MZbFr/9Tps37a9OGRgVBEAABEAABEBAJRCl5kXTU81Tx3tbebKPJ47/0Y3dF0HzOO9AAARAAARAIE4EYqH5yFv39UTzkuP//gZoPk4Li2lBAARAAARAIOznzZPftN90opls5Vmw37r3NN/6I3m2lYfmcY6BAAiAAAiAQBwJhN7Ni5pnpqeaZ792xx3/d11vXvT2EvxsPo4LjKlBAARAAAQSmUA0mm9rek/zkuOh+UQ+t1A7CIAACIBA3AlEqXnR9PWXf+gi7uOJ4/+ua7dFb2E3H/dVRgIgAAIgAAIJSiCk5mvoz+Z5sJ/QU82TN+2v63ZrZE9/Q+Rn89ffcFOC0kXZIAACIAACIBBXAuE1X6jT/A3d+3Tt3uf6m3tf34389Xyv67rRj67pelP3uNaIyUEABEAABEAgQQnERPPsrXu6m+/e566be/+ERLded7JYsnTZTd17JChdlA0CIAACIAACcSUQleaFDT0xPdX87ff8C4nb7v7FbXf/nESff/z5ex/+9Zaet8W1RkwOAiAAAiAAAglKIFrNC6anmv/nf/vNP/2Kxs9++T8sPl6xus+ddycoXZQNAiAAAiAAAnElEGPN/7r/EyT+8xEWj5NY+dXGu352X1xrxOQgAAIgAAIgkKAEwmn+FPlNe7KP5+H91j3dzQ8cOpbF/w0Zw2J9WtbPf/nrBKWLskEABEAABEAgrgRCa36jqHnvrXuq+ZenLiHxkhDpew7/228ejmuNmBwEQAAEQAAEEpRANJqXTE81P3XphtZYP3UpjT25p37Tf1CC0kXZIAACIAACIBBXAlFqXjQ90fz/A8ToppH6cwuEAAAAAElFTkSuQmCC" alt="" />

图6.2 提示输入村庄名称界面

3.村庄名称输入结束之后,提示输入边的起始点和权值,如图6.3所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqMAAACFCAIAAADgl2Y9AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAB/gSURBVHhe7Z35e1TXecf5G+yk2DjeMBgbb6lbt3XS7XH7uK2TOE1qO46N7RjX2A40SRs3j+0fmvSnxGmfJsQ2BoEAsWMWIRDaWMXuBQNCGxJIArGjXUISQiN67pzR0dFZ3nvm3itpNPOd51jP6N6zvO/nnDmfOWMhTbh05coHi7LmLlowN2v+3KyPf79g3u8WzDt87OjNt02agAcIgAAIgAAIgMCoE+jt7W1sbLxw4UJzc3Or9Ghra2Pfsa/i0d7e3tHRcfny5Zdmv9fWM1DXEi+tXqmPl2v9NyZcbrryYfZCJnte/pC1YO6C+V+WHYPpR31mMSAIgAAIgAAIeAQCm57bXZSGQdM3fbwke97iRR9lL2LK/3DRwg8WZh05XnbzpFvBGwRAAARAAARAYPQJBDY9U3uitA00tA2cbouf6a80NWUtXbJg6eL5S7JZ+Xhx9rzsRUfLj8P0oz+1GBEEQAAEQAAEAp/p23sSdmeCFyVh+kXLli3MyVmYszSLlbj1y8rLYXqsNhAAARAAARAYEwLBzvTtvQnBn2kbSJT2+Jm+qbl5yfIVi5cvz162jJW49Zcer6i4+ZZbxiQ9DAoCIAACIAACGU4gsOk9wbd7pXGwJEyfs3Ll0hUrme+XLF++eJmnfM/0E2H6DF9pSB8EQAAEQGBsCIQxfWPbkOaZ7z3Ts5/gX7Zqdc6KVYOyX8FkX15ZedPEiWOTH0YFARAAARAAgcwmENT0sTNtXmmUStz0LS0rVq9dsXrNilVrlq9cvcwrqyqqqm76I5g+sxcasgcBEAABEBgjAsFM39E75Piz7TFe+pjpW1paVq9dx8qqNZ+sXLN2JbP+qjWV1dU3fRWmH6MZxrAgAAIgAAKZTSCw6YXg2ZNz8cJN37p23YY1n6xnZTUrTPlrP6mqPgHTZ/YyQ/YgAAIgAAJjRiCw6bndRTnfwU3f2rp+46Z1G3LXbdj4yfqNzPpr162vPlFz01fIM/2v/PKXK/hWVjqj6xvvugzhUkeOJNn6vK1LK1udMG3pyF16dgxeT9Oxc78lg/sgAAIgAAKcQDDTd/Z6jj/PSsdQ8UzPfn9ubt7mjZu8siE3b0PupvUbc2tqaxOmD+wkpWFS/SRrel7fxTcudcRCS6pyUq2SoqEvfN/A9Aq+TXR/Ey841hsvSbXCKxgEQAAEQMCNQGDTc8dfkErC9Js252/K25Lrlbjyc/Nqa08OnenlDV1s8coTXxsRpklWS0p9+VsXn7nUYem4Zyrnzjv3HcJWwbehi1mNnbj0bExZyU7U0bN2W76oBQIgAAIg4EsgmOm7eoc5/kJn7GJnrC92Y0JbW/uW/ILN+VtZyduSn8esvzm/9uQpg+ndN3chPJsvaT3rrYTh5FtGp/oqzbcC71av5tuQTsqFnk3SBEYlVHd0ykKzDW1cj0plY3i+CxkVQAAEQAAELASCm74zxgUvynXP9O3tBUXFWwuL8gtYKdyylZWCU3X15v9P77in6yZwn05fxYoK/IkSks3TIgB3YcsDubciBjJq2GZx94BltkbyvtMhSBJd2W4Zyfjicl8PqAkCIAACmUcgsOmF4C91xrzSFfNMz/60bWFxSWFRCfN9QSFTvmf9unqL6V30w9Xl6Ay9Q7ptSIUYlUasIT0XY2VbVJFc1zshICRreiVB0dzmb15fFEYjqfAy7+WKjEEABEAgAIFgpr96LW73uOBZuRwvcdN3dJRs31G8bbtXSrYXlWwrKt5W39DgnenlDZ3v6USRnS3v/o5yVarRjpSFpARpdI8cG13BmIWiQ2XSjHJVRpSbEL0Zs05KpXowAZrb4OtJ6RMdYEWjCQiAAAiAwHACQU0/cLnLK1euDhXP9B0dHdt37Nq2Y+e27TuZ8ku2edavbzjt8//pbbOie912RZGfImDaebLpeT/yKISo9GD0RGwm1q8baxrNqhiRGMIYj3LRN0FRXwelcHYZTh+dnh28YkEABEAABMIRCGr6xDmeHeWvDBZu+s4du3bv2LlrOyvM93HlN5w+YzY9V5RSCK8IpRmVozckrnBFyUWWFu9f/ko7zOYqQqK8QxGAbRbpHvQ45fq2qPTciSlwnx0lBTFZttRsBFzg033iLgiAAAiAgEQgsOmF4BNPrsY/ve/o7Ny1e8/O3aVe2VXKrX/6jN30uh5sTlW8q4vEZk2loa1/xX/8W/GVaEXUUWSmWJP3Tz/oOnKEoqb+RB5C75AYQrklf0uMoqcpX9GDUTgbvxWteFd4gAAIgAAIOBMIZfqrsSapeKbv7Ows3bN3Nyule3eV7tkVV/6ZM41BzvTGzZ3WGGtiMxntM0I2xoZhfCnn5TtPLhq2+TjyyOkOhc6Ns8AzNYYqX9TnV29CMPHliQogAAIgkHkEgpm++9owx3Pfc9N37d23fw8re/eX7t1XuoeVvY1nz1pNrxD3lZPRCnInNu0ZNSPLSa7AO5G/+sZJ6Md2y8VYYer4wuRJuUfu2CHRp3H63C9m3usTGYMACIBAeAIBTd+XMH3z1ZgocdN3de3bf2DvPl4Sym88e041vZCocK0iXTkzowlsllJsRLTVXS4Ho98VISVr7mTr23K3zXZS/euVx8r0Ok/bZCnXiYDDvyDQAwiAAAikHYHAppcd39wdY8UzfVdX14GDh/YfOMjKvv2sHNi7/8DZc8NNL3ZqR+voAnB0f7L9GwMj3jooqyEp44p3EvSScrGa+7jGmrTp2V256NEm1ad7ZSIpFyZp90JFQiAAAiAQmEAo08cFz0pLvPQnTH/oUy77fdz3Bw6eO3fe/9N7vn37moBbh1CsuBvAf0pbPSRfx9jiV3wpvvWdN98RjdBsMMV1WzxKYMro8rfEfPGQ3FM2juKSuC89VAABEAABEAj6t+y6++If2g86fpjpD3762UEme+57T/mHhplehk6IxFbNUQB0Ndu4sgh5ALrbfBcNNxyRprjlkkvgOnpDl658s3PJS+Hm22QUQk0qL1QGARAAgfQiEOxM39M30NKtlsSZ3jP9cNmrprcpx0VFLnXSa4aQDQiAAAiAAAiEIRDS9K3M9z0DrfHimb69vaM4/nvxWOG/Cpf9DvzEb8P1Pcs6WtyxWhgqaAsCIAACIAAC6UIgmOnZ773nvw2X/8Z7/tz7ibyG06dnvvHWq6+z8uYrr816Zeasl2e+zn4B/rC/ZRfmTE98MpwuU4I8QAAEQAAEQCBCAsFMz7x+9OLAsXgpGyzd129MKK+ovPeBR6ZMf3jytAcnT3vgrnun3zl1evaSnOCmZ28LfEuEPNAVCIAACIAACKQXgWCmP9Ma21nvlV3xsrs+VtoQ67x2Y8Lx8grP7lPuv/2eaV+7+95Jd0299Y57srKXDPtbdsLc/IBuLIKy7QMA4zQoXaXXVCEbEAABEAABEAhAIJjpT7fGdpyK7ajzys542VUX62CmLysvF5q/7e6pk+6ccssdk7MWLQ51plfSsrmfa15+i5DUu4QA8NAEBEAABEAABFKeQGDTb2emHy77jl5+pp86/Y577rt98rTbvDP9lFvvnMLO9Dd/dWICheJjGZBRzPpFF9OLw70ifrg/5VckAgQBEAABEIiWQBjTK7JPmP7uaQ/dNfXBO6Yw30//2uT7brtr2sLFS78ycdIw0ztKnbUJYHqhebmt7n7eufF6tIzRGwiAAAiAAAiMHYEITB8/2bMP8D3Ts5/Im/rgo1MfePSe6V+ffN8jd9/38F33PpS9dPnESbd7OXL16l95/oT+ZSXrz0VzpWdjh0bWvE88QAAEQAAEQCDtCIQ0vXys90xfUXXi4cf++qE//csH/uSbDzz6zfv/+PH7v/54zoo1t90x2ep4oVjC9DJ3m5LldwD8fYOvvJU3DWk3u0gIBEAABEAABAKbftupGNM8L/x/2Humr645+Y2/f/rxv3v6L574zp8/8e0/+9tvPfY3T61al3v3vdOHvKsIOHLT81lVTC+kLuZcruDytgCLBQRAAARAAATGIYGApm+JbTsZU2Tvmb62ruGp51//px+8/o/P/es/PPvak8/OfPKZmRvzS+575LEhOMShXCeoVyaay7dg+nG4HBEyCIAACIBA5ARCml6WvWf6+sbzr/zsv1/+6a9e+skvZ7Dyb798cc5/Fe468Og3nhhx04tzvH58t2GTa+JYH/niQocgAAIgAAIpQCCY6Rv4mT5+rBey90x/9mLTf/528dvve+Xnv8lm5T9+vaj0s+N/9eR3g5jeeHy3nelTgCZCAAEQAAEQAIFUIxDY9CXc9NJn+J7pLza1v59T8n5O8W+WeuXXS1gp+qyi/snvzaBMz+WtK1xcF4dv25NU44p4QAAEQAAEQCA1CERg+kHZe6a/0tadVXAsa+uxBfEyP5+VI2V1l55+YZbPmd6m+dTAhChAAARAAARAYJwSCGN6+VjPPsP3TN/SdW3NgcY1+xtX7z/Dy6r9Z6rPtT/z6k99TG880+tQ9TcE4xQ8wgYBEAABEACBUSEQ0vSy7D3Tt3X35x1ti5fWTUdYaWHl5KWe52e9HY3pHd8QjAo7DAICIAACIAACqU8gMtOfjLV7pu+JFVT1FFT2bK3sFqWuqe/Ft96B6VN/NSBCEAABEACB9CMQ2PTFJ2PsQM8L/9E8z/TtvQMlNdeLvdLHS1FNX31L/4zZ7wY0Pfu43rek37QgIxAAARAAARCIiEAkpuey56a/IfxfcrK/OF4aWmMvzXnPIGz+UbyxiPTY3WQfjk3EuMn2j/ogAAIgAAIgMH4IhDG9fKxnfldNz24PM72vvI2G1i/SIuf+dnwkVdmxT1QDARAAARAAgVQiENL0suyHmT6u+URhv2fHO9PzByHXkKbnPdv6N96C6VNpLSIWEAABEACBkSAQ3vRC9hbT18YMpneUOn9noDyMbUWdAKYn3h+MBHL0CQIgAAIgAAKjSCC46WuHDu38f80PmV4+0BfLpueS1r/yhAn9Cxkbn8i8bKY3MpUrJ9VwFGcIQ4EACIAACIBAGAKRmJ4f6xOmVzTvY3pZ8ITpFZcTGSclbJg+zNpBWxAAARAAgfFAIJTppWM987tmenY7XhKf3guRK0a3Xef4dP0b3xAI1jbT8+v60PLodM/jYToRIwiAAAiAAAgoBMKaXpK9n+llGRvnwShamB5rFgRAAARAAARCEBgx0w8e6NmZvl7+2XvjMZ0nENL04tRuPL7rjMQR37F+CMpoCgIgAAIgAAJjRSCY6Zm7+QfziRL/93TSmV66VxTG9I7uHyt4GBcEQAAEQAAEUp5AYNMzgyuyHzT9cM07mZ4bXfe6uK6f15UrKQ8aAYIACIAACIDAmBAIY3pF9qrp2W1enD69t2l+TKhgUBAAARAAARBIFwIhTS/LPpzpjWd6nbL+hiBdZgJ5gAAIgAAIgMBIEBgp04sDveuZ3tH07tVGghb6BAEQAAEQAIHxRiC86cWxfuhML2seph9vSwLxggAIgAAIpBWBSEzPZZ8wvaL5sKZnH9f7lrSaESQDAiAAAiAAAlESiMr0TOh+pteFzT+KNxaRI7vr/pC7cm+FmiAAAiAAAiCQvgRG0fS+8jZKXb9ocz/XPH/Iz9N38pAZCIAACIAACPgSGHXTEw4eUdOL474vElQAARAAARAAgTQiMEamd5Q6P50rD2NbvY5SzWh6cdGlzzSadaQCAiAAAiCQOQRG1/RcqPpXzpvQv6xk/bmv5o3zyfsRQ0P2mbPqkSkIgAAIZBKBsTa9LHjC9PKU0EqW/U1PpHvNTFoQyBUEQAAEQCDNCIyi6eUDtNHc4U1PyJvfkoeA6dNsLSMdEAABEAABE4FRNL0Y3nYoD2l62dy6xWnTw/p4eYAACIAACKQpgbQzvTC67f2E8nGC/g4gTWcaaYEACIAACGQmgdQ2veMpPzOnDlmDAAiAAAiAgAOB1DA9N7rudXFdPqkbnzukiiogAAIgAAIgkIEEUsP0hOYzcE6QMgiAAAiAAAhERyBlTG+UvZ6nfu6PjgV6AgEQAAEQAIH0IzDeTO/4hiD9JgoZgQAIgAAIgEAgAjB9IGxoBAIgAAIgAALjhMAImL4mVsRK7VCpb4m9NOe9ISC2T+CN19lF3zJOWCNMEAABEAABEBh9ApGbfqCwpr+Qy577vibmmX72ewZh84/ijUWQsL0tMKKSu3JnKVq5N0FNEAABEAABEBgnBCI2fVvPQMGJ64VeYb6PlxP99S39M2a/G/xMr6AkPhIQt7i83R/J1nfvGTVBAARAAARAYEwJRG76WH5lb37Vta1V1wqq+1jZWt1X13z9xR+/k0iTcKrRzfpFF4Xro/ArLu8SxnQ+MDgIgAAIgAAIREsgYtO3dsfyyro2H7+6pbx7S2XPlgpWuk9d6XvhzV8MM72j1FmbETW90D/O9NEuK/QGAiAAAiCQMgQiNn3L1evrD7dsPNKWe6xjU1knK7lH22sv9T4/620vZa5t/SvHQehfUTJhaHHLF7Fsd5jeFxcqgAAIgAAIjE8CEZu+uatv9cELaz+9tO7zJqb89Yeb131+5cSFrude+5nV8ULwhOlluMZqCn0Xc8P043PJImoQAAEQAIGkCERs+qaO3qW765bvPbNy/7k1hy4y66/c31h5tv1ffjRn6MiuqHp0TK+f9WH6pFYKKoMACIAACIxPAhGb/nJbd1ZxZfb2mqW7PN8vK21YuvNkeUPzP894c4iP7VAe8kxPmxumH58LFFGDAAiAAAiEJBCx6S+1dn2Y9+XHW48vLKlasvPk4u01C4sqyuouP/3D10fc9GwAoXPbmwmFlqx/+Y1CSKhoDgIgAAIgAAIpQyBi019s6fzd+kMf5B2eX3B8UUn1wuLKj/OPHq298O0fzAxiesdTfsrQRCAgAAIgAAIgkGoEIjb9heaO/127b+7Gzz7acjSrqHJB4fGPNh8+Unv+W8+9SpmeG133urguH9aNz1ONK+IBARAAARAAgdQgEL3pf7t6DzvWf7j5ywWFFfMLyj7M++JIzbmnnv2Rz5nepvnUwIQoQAAEQAAEQGCcEoja9E3t76/c/X/rDrL/W7+gsJx9hv9RnsOZnsPTZa9DdakzTqcCYYMACIAACIDACBAYUdOzM73bp/fupnd8QzACpNAlCIAACIAACIxHAiNg+lWl8U/vjyzw/j99+bwtR44E/ok8I1Ec68fjQkPMIAACIAACY0QgctN3/M/qPb/f8Kn3E3nFVeyH8uZvPXb01MXvPP/aUII2VRuvs4u+ZYzYYVgQAAEQAAEQSH0CUZve+9n7/XNzP5+3tWxhyQn2D+2yisq9f0//wqzR+Pv0gjd/c4AHCIAACIAACGQ8gYhNH//39J+yj+7nF1Zkb69lvyxvUUlVWf2V7854I/iZXpkkX4WLzwAyfnYBAARAAARAAAQiNv2llq4/5H4xL7+MfXS/ZOcpVhbvqC0/3fy9l99KsCZO20aF6xdp0wvNK9Wgfyx2EAABEACBjCQQtelbr87bcmxBETvQ1+Tsrs8pbcjZXVdxpvX7r8wZZnpHqbM2SZlevI3Q308YTW97W5CRSwFJgwAIgAAIpCWBiE0f/ws3Vexze6b5FXsbV+w7u2JfY9XZ9mde/YmHj2tb/8rREvqXlaw/F81FD7rp9dmT67jUT8v5R1IgAAIgAALpTiBi03t/tXZX3bI9p9lfrV196CL7w7WsVJ9nf5/+362Ol/Vs9LFy0fiGgL9RsL0JMM5iUpXTfR0gPxAAARAAgXQlELHpmzv7Vh3wHL/2s8vrvmhef9grNRe7n5/185T++/TpOr3ICwRAAARAIOMJRGz6lqvX44Jv2XikLfdoR+6xjk3HOk5e7v3hG78YQk0cysOc6eW2/LyuX5EvynX0+hm/MgAABEAABEAgPQhEbPrW7v5Nxzrzyrryjl/dXN7Nypby7lNX+l58653RMz3Xtou83Wumx2wjCxAAARAAgcwjELHp23piWyp68it7WdladY2XuubrL/44kOmNp3/bRwKZN3nIGARAAARAAAR8CURu+oGC6r6C6uteOZEo9S39M2a/S53pubx1hYvr8uHb+Nw3UVQAARAAARAAgYwkELHp23sGCk/0F9bIJVbfEpsx+z3K9ITmM3JWkDQIgAAIgAAIREUgatP33iiqjSmFmf6lOZLp9dj107yoY7xF1KcbRoVthPrx/eiCV1AeLlccA7aBdQHuOISxWoQp+MLhFUYiozB9psg6H5MURmg6wixItAWB9CIwuqYPIBKbA1y2JMc6tF/l+aZrirtKE6IHQkty8LbnNmnZtCHHrw9tjJ/wossoxIgEJePW7wifV7N1Lm7pT4wvbNugtsrG6y4XdZj8ihEysWxcxiLquAxna25bDy4hhRnXpX/UAYHMJjC6ppd3LmLjtm3Tysbnsju41CGGc9wT6VHku7bnfCCCiXzLN2DfrHkFpU+ilX7LPWWRmg4zQL6iE5qkDZFoZXyix2MczrYqfLE7Lic+NaM2tDJQsCxsrYwrx3Heg0VCQMYtEMhUAmNnetteLO878o6gbH+EP3x7tg1BbED6+nDfi201XTYyuo4esMCioFPi593KX414ZVDuVAPMlJ6mLxxf/kY4opX+xJYsTUbBYlxC+uIhWgWg5x4hEYkvT98sjGtPAWLrxHe66dFxFwRAgCQw6qb33RmVcJUdWd84+JVgO4je0NiVsgkad3Nx0XFDtG3odOdKskq0/FvjRSNVpb4jRqKaGMUlBmUl2ObdZWZdQuL9GPESQ7vUt2VtjFzu0EhATIpSU5n6pHDZBiUiNyJVaBibJzv1Yl5sE61PHF0Td0EABDQCY2p63y3SfQe37ap8cyfu8gpiG1X2Wb256E3u1nhRH1SPRB6aDtLlrgherqzEaUxWbKa2V4hjgrYJ9Z1HEZX8xAjQWFO56ELelqky48Yp86VEd55Un0RXCm0bZA5HTLH76EpNuR9OiVeg4dNREbNpTFyJwQUO6oAACEyYMIqmF69qedOxvdRFHb6V6E3E5Nm2EtGQqKCvAN/KcjB6DHJzOTU5C99l5779KdEa90ElJHl0fsuYkRKkLxa9vnHWbP3o1401bbkYr+sXHcHSvRmZ23o2LjBbskZi+hoz9um4wPQVoqejrxB+RW4r8qUrK1hslfXgiXViu6VjwRUQAIFBAqNoerFfONKXNz6lLb8lfzX26VtB3sKUPuV9TdmhlP2L2M70sPW2euTENqdUVmrqxJQ91Fjf2Io3dC/GwPREAqemkCTy8oWgd0VQ1XuzMXecR31dEUMoa1IfQs7FxlZuJY+uR6JQFZ2LMOQnSnOX0ZVI3L8VNY0x27DgOgiAwCCBEKbvV/7ZfHvvjQnsP59/Ty/vCPx1qxTlVS3uytuQyw6oDDQSU+64uxGRGHswYrHtywQ9sVPLSPXtVcRApCMDdyFpq28bgl4JxvhtVI3XlXHpiaN7cO+KmFxlFuT0R2idy68jYgbpNSBPq7wgHV8I+tqjV6Yep/FV4LIgUQcEMpvAWJteoW/bHHk144Zo22VsJpA3F7lD+rkeAFGfSMo3Knmj94Wj5G7sXLkowhYDJRWSjbYtVJfOjSn7rgQlflGfhmCcNZf5MvZPTJbtFg/A+JCHoKdJbu5ImDchRhcVLNEZXn18aB2p8aKStXEi5Is2RMZ+bDHjOgiAQJxAcNPXsDP9sGN91Gd6MUNie5K3Qr6biK/KdCrbga2abytileg7jq2yraYeJO+B2ATpgI0dEhd1gERI8nTQLx65E9tzX/J0LnLkxlUhSCpTrzekl4rSub6QiMmypUDPuzyEMU0ZHR28Pk08WuJB3BWZCrY6HGKRKD0rC0MJzBeRPBCdEZkuboJAhhAIbfoh2QcyvYLZ+Pq37bbyPkj0IzYm45SK/cv2xNZKvu6yeypZ0Fuqy6CsDrF7EnuuaCgAElu2kZ5LvkoAehNf8nIFOQxlkRAD6StEvmJbP3r/thGN00Rf5Ekpi0dkqtDWo1U6N1LV68jzm9Tc6XHKtImuXALT55SOjdXX6QWYAjQBgcwjEMr0w4/1yZhebGFij1M2O30XEK9z8WqX90FlSzJOpHEfkTdBZZ/lI+oPJdQA25PvbqtjMe5xSj90gjoiGaDOwYiUrkYQi+SlFSxfeb70lHVotiuRrB95ZgUTOSrO0BazcVIUtsb4lUVrm46kVqY+rlilLlTl1eKyrowpiBEjWWDoBATSlEBg07O/V1fEy+Bn+M6mJ17V4TdTYqsK3zmxtRHrQxlX2db1hrYU6B3ctuXZspZnQQ6JoKQn4rKh++Yr7/iCBj1ZLrRtYhDD6YEZQ5UjofM1LmxiQerLiV9x6Yfo1n1E97VHA9fXnu/CUJookN1T0IcmQsUtEMhUAmFMr8je2fTG3dy4ydo2PrkyvRHbNlM9BmV7JeIRUclNXHYcfXfTNzhex7coZPRvjfEbuSmJs66M27Rt85WTUurQ+RqXgTxfxjCIF6qesq0H2/rRc6dj0PO1TQQRts5BmRGXvJT+bZPlG0awhrYFoyxjAcdlZpXF4xs5KoAACNgJhDR9Qvbesb7fzfTEVm7bZfSNT7mib6+0D+SBiK3NeEtsXsYhiBQC3Aq5cG3xs26T3dBd6itUHfOle1bu+oaRbAVaJ/SC9B0rqWUpTwrvWY7NccXKC4ZOzba0HJPyXZl6P0lNtG//qAACIJAMgWhMH/8Mv713wOHf0ycTHOqCAAiAAAiAAAiEJBDe9OIzfJg+5FygOQiAAAiAAAhETyAS03PZw/TRTw96BAEQAAEQAIGQBGD6kADRHARAAARAAARSmkBUpmfHepzpU3qmERwIgAAIgEBmEoDpM3PekTUIgAAIgECmEIDpM2WmkScIgAAIgEBmEoDpM3PekTUIgAAIgECmEIDpM2WmkScIgAAIgEBmEoDpM3PekTUIgAAIgECmEIjW9P8P+Svt+8yUQV8AAAAASUVORK5CYII=" alt="" />

图6.3 提示输入边相关信息的界面

4.输入边的信息,以输入0 0 0结束,如图6.4所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqMAAACbCAIAAADZSwXWAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAABXpSURBVHhe7d3pcxzFGcdx/YuQkJCAIRS5wM59gV/pvwkkAYIB2y/zCkgRQgzxqQJVxYDBxrJlsL3Ykp3WttTq7ePpZ86d2flubbmk3Wd6uj/d2z/N6vDa9uzh6Y3d4L65tXvk2PE1d1s//HDho/jxZGXu8EyrPIwAAggggMCUBWaz2eXLl69cuXL9+vUb3u3mzZvmM/Ovu21vb9+6devq1atHjh432R0Hukn5tZpJb8M7l/Tm8eJ9ynPI2BFAAAEEEMgLDCPphZhn8hBAAAEEEECggcAykj7ubnw172qSTwn18oENpPo4tPjWhS0IbppHlL3PwWrAladIlrU4hCKOLehiRE3aHMg6X8oQOpqOJguSYxFYLYF+k75GkOQyQLMlKWvkfPXnW650zwaHCC0IseR3PvdxLrRyseH3Pz51sv9CLmrOIpxRUEpu/Up8W5Zr3D0Vf5B8YedOmitOPq55MMa0jySRhWWjOZdQozld7vDcetB0qcl5Ne1Tg8C0BfpNen/nEjbu3DYdbHya3UFTI5xOuSfKZ/GfzX1sTySY+E8VO1wctS0I2hSOip/SD9kNLcasMV7XiCyZI3JHJT+I+5M8XW5VFNmVy8lOTW+nDk5UbxS5o5IrRznv9XoiIPMUAlMVWF7S5/Zif9/xd4Rg+xPyo9hy7hTCBhSvD/1enKvUbGRyTdxhxxLQBf23zfr/Jnl9KL1qjZmKh1nEKfoncdxR8Qe5wcoyAUtyCcWLRziqhp6+h0JPip7FUSTXXgCSa6Q43fLZeRYBBESB3pO+uDMG3Q125HjjsI/U20HiA5NNBZtgcjd3Dyo3xNyGLjceDDborf00+WBSNahXMgpl7iyaPgQrITfvmpnVdMm2k+QVTq2pz4062XO/waSAm5SgMpj6Sly5kwo9T5IGGsnDq069m5fcRMcTJ1fyLAIIRAJLTfriFqnfwXO7qt3chWdtgdtGg302Pty15jebfDA+adwT/9RyJzXPus77xUE/k4N1m2nuFaIcYG5Ci/PoeuV/kARMVgYPauRzIw1mPDllRSW58UptCk0F2jlki+OmWH/2oNJvxyrZAhlf7pUwm8mBB33Q4FCDAAJraz0mvXtV+5tO7qXuauxWEh/iJi+3lbgDhYJ4BRSL/c7EffAP94fmj6K47PTbX9Db5D4YdMk/u30qOaKgk0WWuD45a7l24seTlbmxJB+PH1TCyq0lzXMtJxdYbrBJsXiNJdtULrB4hcTDiVeIfcQ/1o1XLg5YcsVx54V1knsqZuERBBA4EOgx6d1+odT3N77gWPuU/2+yzWKBv4UFbfr7WrBDBfuXsJ3F3Y6PjXsubHNBcVAZiwV7aLI+eZQ9UH9PdiweSO2hBZLCuIoIcVOCatxazlw5j/G6Ek4RrMn4FP5Ycrb+Uf7Z454Eqq5x1w3/g+BwzdmDnug/dZXJPudYeBwBBA4EGiT9TvBn8nR/I8/fEezrNrgHr2r3rL8NaXbA4ERdTLlydxN6kmwhyZLblwU9t1P7pPH26vogDMcH10jm6nOnkFdCsv851eTjwXnliZNb0DclTG4wC/7wO1rn/utImEF5DfjT6i9I5QshXnvyyoz7mXwVaBYkNQhMW2DZSR/o5zZHW5bcEHO7TC4J/M3Fb1D+OO6AUC8Mqtgrf6Mv4gRjTzYePOi67U5UqUs57VxXNY0nh1xcCUH/Xb2MkJw1zXwl2xcmK/eU7UDy5p9Cnib/cKWwPUQ4uyvI9C7x6rOnjkmTDwajTk6E/2COKNlOrs88jgACc4H6SX/JXNMvXNa3fU3vZshtT/5WaHcT928wncF2kCsrHiWsknjHyRXnKuNO2haETVDucLJB4cEYUOiSPx3yi8dvJPdxUV4ei9/z5KpwksHUxwfKSyVoPF5IwmTlhiDPu3+K5DB9Ornz8TTZ3go34Vk3Umcb4wiLJGg5WBhBx4pE/onkEYnD5UkEJiLQOOkPw75W0gfMydd/brf190GhHbcxJafU7V+5D3JH+Y9rds9gFPKWqjmpqRF2T2HPdQc6QGHLTuppxht0ID6kKO8X+N0IFolwoniF+I/k1k/cfu6MyWmSH7SDChaPG2mgHfc2aDypGtf481tp7uJ++tpCU5qOxXMq983Ux3o1poBDEJieQKOkX7ysr5L0bgtze1yw2cW7gHudu1e7vw8GW1JyIpP7iL8JBvusPWN8C7paY3sq7rYxS3KPC9qRBxgT+YCxQ5JULhPEWnlp1RuvP1/xkGO03COtrB9/Zp2J3ytrmOtzclIC22T/g0Wbm45KKzM+r1ulGlV/tWjWVXII7oytLDAaQWBFBWon/SkT8/Z+8B6+OumFV3XzzVTYqpo3LmxtwvoIzhts6/GBuSHIO3huy8uN2p8Fv0uCUjwQzYZeHK+/4zsNebI02rlgcKeLO5bsqt8TebzJhS0syHg52Uc07QjN6s+oX3syeLz2igsjOCRA1g8hPrXQVZ5CYKoCTZI+CHt10id38+Qmm9v4/GJ5I85tpnEfgu1V6I/rlX+IZseJd7d4g7M1xXsgE3+a7H/SLRi4aSq5Tec2X39QQY083uQy8Ocr2Q3hhRoPOddCbv3EY5f7EI83NxFCt2OHYEY04wraz01WsRv1DswtmGAZOxzNzAaLp9hzChBAIC/QMOn3w37vsn5Hl/TCVp7bZeKNL3gk3l7lPPBPJGxtyafc5pU8hTCEGk81XLi5/ptmq27omvpAVTleueXg2WI3qhbIcSIvyOK5Ki1Lf1Jsy37flCvWXzDy0HJLSzmo4sqM26k00cX2KUAAgSoC7ST9/D387dmDNZP2wW/Zm083t3aPHDtepVfUIoAAAggggEA7As2T3r2HT9K3MyW0ggACCCCAQIsCrSS9DXuSvsV5oSkEEEAAAQTaESDp23GkFQQQQAABBIYp0FbSm8t6xTX9evS7wrKKX6/xq1qvaZMaBBBAAAEExizQY9LbGHa34NMY0S8oFpvDq9aPedroOwIIIIAAAkqBJSW9u/hWdlOT9H5TVeuV3aAMAQQQQACBsQksI+ldzPuX+DJc1eSuWj+2aaO/CCCAAAIIKAWWlPSmd8owrnf1r/8aQulEGQIIIIAAAuMU6D3pXcArk96yViquUT/OyaPXCCCAAAIIFAWWkfQ1wpukL84kBQgggAACCKQEek9614liePsFxeLgOl5Tz4JAAAEEEEBgAgI9Jr0LYxvD5l68uUpNcdB+sXEKEEAAAQQQmIBAv0k/AVCGiAACCCCAwKAESPpBTQedQQABBBBAoGUBkr5lUJpDAAEEEEBgUAIk/aCmg84ggAACCCDQsgBJ3zIozSGAAAIIIDAoAZJ+UNNBZxBAAAEEEGhZgKRvGZTmEEAAAQQQGJTAMpJ+XS1gKv278jh9+8oGKUMAAQQQQGC0Ar0nvU1uzS2oVB6oLNN0gBoEEEAAAQTGL9Bj0le9Ovcz2x0riFdtf/yTxwgQQAABBBAoCvSY9LYv+mtuV1kpwvXtF20oQAABBBBAYPwCI0l6/ZcIJP34FyUjQAABBBBoUWDwSR9c2ReHTtIXiShAAAEEEJiSwBiS3s6HMsKVZVOaY8aKAAIIIDBlgcEnvZscZYQry6Y854wdAQQQQGBKAj0mvc1g/16ErlRfo/1iByhAAAEEEEBg5AI9Jv3Ipeg+AggggAACYxQg6cc4a/QZAQQQQAABrQBJr5WiDgEEEEAAgTEKkPRjnDX6jAACCCCAgFaApNdKUYcAAggggMAYBUj6Mc4afUYAAQQQQEArQNJrpahDAAEEEEBgjALLSPp1NZSpdHf1QXuF9ihuCCCAAAIITF6g96TXZ7BfqT/KxTxJP/nFDQACCCCAgBHoMemrXqDXS/qqZ2EVIIAAAgggsNICtZP+9KUdcz/l3bdnD9a2Zw9Pb+wG982t3SPHju8zVro6d/TKo1yZsn6lp5bBIYAAAggg0OSavsekV8Z2vfcAWAUIIIAAAgistEDDa3r/sr6ba3plzJtJspXBfaUnj8EhgAACCCBQFGie9C7sO0h6fcwHA619YBGMAgQQQAABBEYlMOCkb/JuPEk/qlVIZxFAAAEEuhNoJentZX3pmr7qW+tV6x2Sf2B3crSMAAIIIIDAGATaSnoT9qWkHwMHfUQAAQQQQGDFBOon/cbeb9n5d5J+xdYGw0EAAQQQWAWBRkm/GPYk/SosCMaAAAIIILBiAiT9ik0ow0EAAQQQQGBBgKRnQSCAAAIIILDKAk2T3ryBf/AePu/er/JCYWwIIIAAAiMVIOlHOnF0GwEEEEAAAZVAO0k/v6xXX9Ovq3q2UGQO0Rxly5TF1XvBEQgggAACCIxOoLWk31AmfY0YVoa333KNs4xu6ugwAggggAACCoEGSW/+c9r5N+kP7qVr+noX3PqjSHrFfFOCAAIIIDA1gWZJvxD2paS3tJWutl1xpaOqnmVqc854EUAAAQSmJNA46Q/Dvu2kr32NXvXLginNN2NFAAEEEJiawOCT3sa2uxfnh5gvElGAAAIIIDAlgTaS3lzW713Zt31N70+DMr+VZVOaYMaKAAIIIDBxgRVK+trv9k98CTB8BBBAAIGVFugx6YP34c2nypt/oHBI7faV3aAMAQQQQACBEQq0l/S7unfvR2hElxFAAAEEEBivQKtJ/3Bte/Zw/k37hfvm1u6RY8fHa0TPEUAAAQQQGK8AST/euaPnCCCAAAIIlAVI+rIRFQgggAACCIxXgKQf79zRcwQQQAABBMoCJH3ZiAoEEEAAAQTGK0DSj3fu6DkCCCCAAAJlgX6Tfr3K37V1nTdHaW5+4+5jzYHUIIAAAgggsLoCPSa9TV978z+WcWtX6g9c3dllZAgggAACCAw46f1rdM1EBdFO0mvQqEEAAQQQWHWBHpPep9THsL4ymKraB676lDM+BBBAAIFJCSwj6StlcKViN3X1jprUzDNYBBBAAIFpCPSe9FUzuGq9mbYah0xjshklAggggMAEBfpN+hoZXPWQqvUTnHOGjAACCCAwJYEek97PYH0e6yvttFWtn9JkM1YEEEAAgQkK9J70Nok1eexXaupJ+gmuX4aMAAIIIFAS6DHpS13heQQQQAABBBBoXYCkb52UBhFAAAEEEBiQAEk/oMmgKwgggAACCLQuQNK3TkqDCCCAAAIIDEiApB/QZNAVBBBAAAEEWhcg6VsnpUEEEEAAAQQGJEDSD2gy6AoCCCCAAAKtC/Sb9OvqX6a3A61U7xfbj7khgAACCCAweYEek95PX00SN6mf/LwCgAACCCCAgBXoMel9cpKeBYgAAggggEAvAgNO+iZfGfRix0kQQAABBBAYvkDvSW+v5s1df1PWu5aV9foOUIkAAggggMBoBXpPeiulD2N9ZdX3AEY7Z3QcAQQQQAABvcCwk75ezFf6SkJPRSUCCCCAAAIjFGg96R+c3tgN7ptbu0eOHV+4jtdEuF/TRf0IZ4suI4AAAgggUFWgi6TfSSe9u9TWxHZQXOOQqhLUI4AAAgggsIoCHSX9QtjvX9OvIh9jQgABBBBAYOACDZI+vHTfnj1c256Zd+/NEyT9wOed7iGAAAIITEWgWdIvBHqQ9IfPcU0/ldXEOBFAAAEEhidQP+kv2Uv3w0A/SPrDJ/afI+mHN+/0CAEEEEBgKgKNkn4/0/d/1p6kn8qiYZwIIIAAAiMSqJ30p0zML17We0m/eFnPNf2IFgRdRQABBBBYMYEmSR+EPUm/YmuD4SCAAAIIrIJAC0l/cAG/n/T7+e9d1ieu6dd1f/relimLzXRUrV+FGWQMCCCAAAIISAINk96P9cOkD8I+THplePsBrwn7qvUsDAQQQAABBCYg0Dzp3Xv45nfp936f3nwuJb3+srtJcmu+MpjA7DJEBBBAAAEEWkl6m+wLSX8Y9pd2Dq/pXQBXTeKu61kICCCAAAIIrKhAx0l/cef0xXnSH63+P9w48Uox794zWNEJY1gIIIAAAghUEmgr6c01/OI1/cWdU/v3+5tbO0+6pPffvTcfF2+VYr7eFwfFPlCAAAIIIIDAaAW6Sfp5xp+8eP/kBXO/t3l958nnX1wgUua3sizWr33gaCeSjiOAAAIIIJAU6CDpbcbvxfy9t85/+9a52Sdf3X/iuRcqJ72f1prkrlrPikAAAQQQQGACAp0l/Tzm3zw3e/O/dz6+9u0Pf/7HQ0wbycXw9suKxbZ1ZcsTmFeGiAACCCCAgBVoP+lPH1zNz2P+9usffr1xdfb4T3+POAIIIIAAAgj0L9B+0p+6eH//av7sHRPzr31wc+OLO9//8W/7HxtnRAABBBBAAIFOkv6k+fb82bsnPvrm9f9sv/L+9YtXbj/27K+xRgABBBBAAIH+BTpIevPz9vNvz5/48Ou/f3Djb+9dvfDZ148986v+x8YZEUAAAQQQQKCLpL9nft5+/h36W6/9e+uv//zywme3vvvML7BGAAEEEEAAgf4FOkr6u298dPvEmVuvvn/9L+9eufDp9nd+dKz/sXFGBBBAAAEEEOgu6b95/cz2q//66uV3Pj//6fajT5P0LDYEEEAAAQSWINBl0psfx7NJf/nmo08f3RvcesVfee+6fgngnBIBBBBAAIFeBbpJ+rPm3Xvzg/c3X3nv2ktvf3bOJP1TR8M/lWNTXLgFBa3X9+rMyRBAAAEEEFiOQA9J/+m5yzceeer5haR3F+vKpO+ifjngnBUBBBBAAIFeBbpO+qt/fvvyuf/deOTIc4dJ72JbeU3fUX2vzpwMAQQQQACB5Qi0nfR3H5wyf/H+8N37TNKbwerfjbdfELRevxxwzooAAggggECvAm0n/ezBqYvm9+nn36c/Y34i79pL7yy+e+8CW5nc3dX36szJEEAAAQQQWI5AR0m/95dzTny49/v0L79rfsvO+4k8e4Guv0bvrn454JwVAQQQQACBXgU6SPpL5n+mn7159o65rH/tgxvzv5E3/8s5wUW88preabRe36szJ0MAAQQQQGA5Ah0l/bdvnb+79wdx936l/trFz83fvf/l4XW8zWx3sS4M3FU2qP9H5rYcb86KAAIIIIBAvwKdJL35Vr25rN/77+z2/tfaG5e+uP29Z3/T77gOz0bSL0ue8yKAAAIIDEGg/aQ/fWnH/Bf1J+dhb97Df/3MrY0v7z7+k98ta7Qk/bLkOS8CCCCAwBAEukn6S/f3LuvND+Gfn71x9vbH1779wc/+sKzRkvTLkue8CCCAAAJDEOgg6Td29i7r98Le/Gie+Yb97JNr95547k9DGC19QAABBBBAYGoCXSW9CfvT+2F/b/P6/Seef2FqsowXAQQQQACBIQh0k/Tzy3p7Nxf3m1s7Tx59cQijpQ8IIIAAAghMTaCzpDdhf5D386Q/PjVZxosAAggggMAQBDpIenMpb2P+4L65tXuEpB/CbNMHBBBAAIHpCfSV9Me4pp/e4mLECCCAAAIDECDpBzAJdAEBBBBAAIHOBDpIevfjeP6791zTdzaFNIwAAggggIAg0G7S/x8GgYKVhiVzkAAAAABJRU5ErkJggg==" alt="" />

图6.4 输入边相关信息界面

5.边的信息输入完成之后,回车得到邻接矩阵,如图6.5所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqEAAACRCAIAAAB8JfaNAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAElKSURBVHhe7Z0JeBxHmff1LLDfst+3BxBuSEhCEkK4dnmy2eDdDfnIR+KcNsHgxAEWyB12WSAhNzmcxM7h3A7EluJTtnXY8iHbsmUdtg7bkqz7PkfHSKPR6L5sa3r43qrqrq4+p2fULdvonef/+OlpdVdX/2c8v3rfqq5KWL9+/auvvvrpz1+QuGFLaDLSOhip7SeqiUXVgYiomkCESFsCK9ZMUm2/VBuQamJXdUCKT1V9kr0q+yQbVfRJFb12Ku+VRJ3olUSV+SVRpX5JVo9Uouh4j6SqWzqm6Gi3RNRFVKyoqEtiKuxUVdApyfJJBT7piKDDPomogyhfq7wOSVa7lGeh3HZJVpuUKyinTbLSoTbpUFvYRK3hQyaSsltRc+TAwVbJqAOt0oEWWVkt0pwonNWiVXM4y6D9zeG5Ebm0XJ94bp+7p98AY2WFD7SqOtgaPtii0YGWMJO6H44RlN0aNor8bxL+o+W0hbly28JE7bLy28P5HUzyT4H8s6D9reA/I/y3pahTIqI/OPwniPwisZ8mKv57dbxb/R2jP24RrlJ/RFSZPyLqhD8yOBn5wV33Dk3O9Aydiq5hdsxJWYPTPYPT3YNTomDP4PjpV99cPX5S8g+f9A+fmr2GJk6vfuDnocYm3+6doO49O3syifoydwaIMkJUQ5kZI0TbxzK3j2dun7CW7q/wFk6BE0f2ZgzvzRjamxHamzGwNyNAtLN3784equ7Mnb49O4NVlXf8v+8OT8ucBZoD0xMA8Jd87duJ65N7RmPjOkc4o7vMdQXtIsvr+iNEQRtJdUGpDkg/J4ramLBpN1QF9I0DaAqIzQW5ZdArVSoiDQIua/Y7pT78nxH+C/H/S8co9bnk/3udUjH7D6lI/o/qkwop+LnEFgDb5v/hxY18nyTLqmXAmwh0I9dE4dwORcrPDf/dyWkP57RLqDl1gLbMaCOMKBskUF8GEuW9x6R3xHhA79wxXsb8rG7cBPYq5oH3Aul1RKd0d4X0QH0j6fPawyCOeR3pxR8E8iuhBAzOSa/+NAmYh7hFCWMI7EtBAul1mI+N8XI7wI7x3YPTofHTrxDGh6EpMHvAQwlDEzPv3vufofoG3440pq4daT0ZoJS+jJRARkowIyW0k2h4Z8oI1ViMYmeBhnelhHalDOxKCe5MCexM6d2Z0rMzpTsjrSsjzUcVOHHiR98jjBcD7ISHHnro8q//M9A+psBdBLwYtXO0M6jXK2oIRhoGZDUORMwkNQaJGpypPijFIWhGRJVNO8PYOOCtAfiTvN0nVQsi+IdmgdIyMM0NiCkBq+i/rFciogkAFvSXcIkRP982NAVMEwCsKcDTAKwpICYD+LYuK2DTODA2F/R7OsJHzHS4I6xICSx4hIEb3jjAszgsecPSM9DCMPKeR/Zekt6AeYikz9lQnhtlG9NronmCfG00L2Je/6dZxPSAfIjpGebzlGiefRlYeo+17O1JbxrQw++JGNNHJT3BvEB6EfMy4yecxfEGxgPRdXE8Y/zKVe8wxhPMD802lAfGv/2LZcHautZtyaCObcm+bcldqcndqck9qcl9qcmBtM3BtM0hquH0zSNEm8asBX8dFf4Kb+EUOHGIljCQvjlA1ZeW3JOW3J2W3JWS7EtJ7khJbk1JDhw/vuTaf9Mz/tvf/vaadcktgzEzXg3faU6e0V1EO4M6w3lTSFZzKGItqXmAqMlWjQNSnKJtCBvZNC9M2xMk9yBK24DQtRVq+iUTCX0NclOANgjEpoCcA9B2DfCmgKYLwNAO0LQGhI4Akx4Bq/SAkH8T8wRiTwHP10XfoHkFU4nJBtyeMwdYG4414Fjyhv3QM96rsFcie0b6OcX8uZyxj455iNTFUJ4yXpei53tMYnpoEMyC9Cx7zzAPn7jYbWdJemcBPSG9o9S9nL03DegZ44HKvoFpopBGnaFpM011Dkz5iCZ9wcmO4ASXLzgBe4Kj0y+99vbI5KnO0BSoKzTN9fq7G27/0b02en31hq7BaZ0Gxk69/dMlgcqqxo1JzRuTWkGbkjo2Jfk2JXVtTuqhClANbE4KbU4c2pw4vDlxhOrdR5/kl4Nt0z2wE06BE0Obk4K0nD4oM5moKznJtzmpfXNSK2hTUvOmpJ6iotv/42o94yFRz9L3McXxanLeQHcWshOuU7QD0VtAg6Snn6nNUlLboNRqq5ZBKT41h6S4Zdrm0LUzoH3AWw9O2gpi46A2KMnSdlXIbQLtmAO1KSD0EZi0CWjvQDkT7SDQjQmQ3/qlE1S6IQI8W8AHCpT2SFy8iTD7Dc2wA9OEBO700gEWZsHPsZzRYchXYC+SHnL4rNveY8w7CuXPuYx9NNhrSS+k6FnsbsS8TUwP1I+1n14J6EnbLj7Sw9fG2EnvJKYXO+l1PfSM8f2jJ1v6JphaA9aS/zre2sc01tILGtVqLDA8tfzlN4cnTrUFxqkmuAC3f7Z9wQHt/RM6QfXeWrqor6ysfu3qhrWrG6laE4k6Elf7Eld3J67uSVzdm7g6kPhuMPHdgcR3Q4nvMIlXhO23f/eYbo9yJDkRTu9LfBeKAnVByUmr25NWtyatbklc3UjVANc6nL/46itNGD818+dYAS8zXgA8S8tzurNgnaGdQH0o0k7VMWyn9uEIkXKwWxvWrQq5wcHbH7oNqL8T8cwEa9OIb0lDR2nuyMkMbVcF78Lg/Rq6DT6OoTYYIdKOW1Q/OO2wx6pAxFSVgYiqvkhlX6TCXr2RCkHlvRFTneiNWMofgeEzZjJpWGibGpoxOLq+OnzrogMQRcFPLbS3CO+VwZs60svZ+7MG83PTKw9XkTsLyPg7dxIYZql7heI8prfguvOY3gnpeT89G4tHSS8PudWTXhmgw7P3cm8dDes1nfTasXis7WgciwffND4cT+yhJ530Sg899CAvvute/+BEjW+Qq9Y3WNtpJtjP/kQ2QjW+UHXHAFWQq6ZjoCs49ocXXwuOTNZ1DurkhPH1XYM6dYfGX1t8fffR4vLXX658fWXVGyur31hZ9+bK+jdXNr65svnNFW1vrmh/c0XnWyu63nrJ/9ZLvUQvBqje+vVvdVDnbQzYD3+FY/reehFOgRPhdJDvrRXtb61ofWsFlAzlw1Xq3ni55o2Xq9+Aq7/ccTDr1m9/Y7aMF1P0cn6e0Z0DXqQ74zpFu2840gkacSB2pFZwehyyb1LY/NWqtQGNFb2UtIQuSyE2F0wbCs2DESbekaHZoC0D3cAF3iCAjXomYdAD25bbBJZPMaitBGPDrro/IkvbYtA9NyG+tWpMkP195oKGBZXdkwv0r/wYdjzKEwegkQftNmiiQaMBYM9Iz0ZpwG83/KarqXs2KM9zzJuF8n8RHfO6VoIW9kKwLmTsOdTZIH/TgF4//D5aAl839h5ILwy5J300lqQ37afXZu/FTnpx4L0p6QnmlRF5xrF4jPFdA+MVbUFRlW3BKGrtrwC1BMpbAhUtfapaA77AyFMvvBoYmqhqC8pqD1ZRcdwa0/UMvbC/uj2oU2dw7NVbvtdVWFC2cjmofOXyypXLq19ZXvvKc6DGV55rfvW51lefa3/tOd9rz3W/9lwPVa+iN//rf4xtC9gD+9kx7Hg4EU4HtYJeJWVCyVB+zavPVb+8vPLl5eUvLy97eXnr/r03f+uK2Bi/r7AmdX8BU8o+Wan75D1p+wuY0vcXZBVV1/eHgVKQmWexO4vaGZgB7V0jkW7QaAQG8BsF+zViB1PBiR7JqsHhG3HUnrBrQLCWjTYhYdo+sE8h8HaAPj3AxjfwJIG2QSA2BfTbtDVm2TKwe/ZB/1iEnFdg2QWdHLQwaAPRyZMUVo9c4n4XHIB2HrTYoEHGMjqM9BBLAelZAp9hHnpnWd6eDbyXk/YuxbVm8bHTjP2cJu1n8SidVQ5AwLwdvxnF+bOFrpFeeNCOjMKTn3ORh17GFtNbk14cpmM6HM/wfJ3cSc8Y7+sfLWsOGHWiOXCiRRC8VdVX1gTqLSXyl6nqbesdfuL5V/oGxwH/OgFZR+gLNsQ/ifuh3VDRqlFHYOSVhdd0Hsk/vvxpUOnyp08sf7rixaerXnyy+sUn6198svGlJ5tferJ1xZPtK57sXPFkF1WPoDce+m9+CXZ12MMPYMfDiXA6qBn0EikTSoby4SoVy58uX/502fKnS5Y/3bJn103f+EpsjE/P2FNWWVdWWWtQ3Ykqot0HjuzOOgzakrrjeEtIBrySlo+H7gT2EtHIrNQ1IsWhzhGJaFgv37AkqzHzpoQl6xsl31DF0wkJTx+ROoaiq31Iah+kgg2uQTL+gEs3EKFlMEwltYRUiUMKmkKSXnSsovmAxFieWWDjCWweW9APNrQeeBj1KYa6/nA0waMQcIzxgYiKRxMSHs2N/qCEeO7hLUsSbs087ODxCn7WjucTEp6vcHAj9jXx/+nWhOu3+GdRTjz3G/VytJlFxuIw0ssxPU2W8oBejObZKDzvQ3nIijvF/Nwk7V3P2JvF9FrMN4cPgLSxu2iLK6SHnnse1ptjPqbsvQXpo2KepO6VcSc8oCeMX3YvEDo1t9qoB3/zvP0QuQd/81xKdnnKoROgVFkVxdUd9/726UZf//a8KtCOvOod+bKgtAB9wQbfCRvm+w9X76A6Xtf51EWfqEnelLbwmu0Lr9lx4zW7bvyPzBv/Y9+N/37w5n/PufnfDt+8oOiWBcW3Lii5dUH5rQsqb11QdeuCakErbr+dX4JdHfaIB8DxcGIZLQHKOXLLgvybF+TcDOXDVf5jD7niNRk3XrNj4TUlb7624Lz/Exvjc/ILT546NX0yiuCY7NzDhbV+1gHP8vMC4CueSeCv17NHI35ZZP8zRWJYz/dIPaNUzZk3JyzZ2Ky8ZTttZdk4aKJFNVk2HRy1CWghwPjO4Yo/AOMLFPazRsCQXlYtAA3slRYA533mCwkJL1SIIxCLU5aoFsLWCxWM/VYDCVX8Wz+kYNoaaBiQ4pH1E4+8rXBkK+HrEUPrgexXXjds9Tt+JJIyL8+qLUL+qr6WV7Birepgc9GM5QkJyunmh+WtSkhYlSHeV23mDfqrE8bHcnfG+xLvV7g7+7o5eMSUtgM0mOfRPO+ehz5XNuSeDLZXQnmPB9+xzm9HD83PHeY9COVF2OuxzTAvwN606eMI9g6G38vP0JM5KiCmV+a54hNh0VwO76eXB94bsvf8YXrjk/Sxkp4xvqShZ0t25ZZDGm09VOmk+3xLVtmWrNItB7hOFFa13f0/T9V3BFJzKqgquaDAbvoyNh34/rScSlW5lWm5lUdrOp644B+qN67f9r2r0753dfp1V2dcd/Xu667OvO5fs77/r9nfvyrv+1cWXH9l4Q1XHrvhyrIbriy/4cpKQSsWL+bXZVdhFYD9/LAKemIJLQHKyb/+ytzvXwklQ/lwlZ3XXb3jOnLdtOuuPrbq5as/9tHYGH+4oKixuXtlUu7L63Je2XDo1c3Zq7YerK9vHxoMdXV2ggYHQ2t2lYKA8UW1fpKl1wXxTXtvTki4Ob0X8vME7UWvJ6yo6B2LgPxjkYr0JfAWNhRVPJuQ8Gwxeyv5RyV/7Iy3aQEcXAE18ct5ApYt0MmQPNCDf1jqUmQM9/ke4D1sc+Q7Jf2Q1MbUkHljwqpMJcqHEP8oMP62zKPKQwekEZCwJLFeE+WbUt8k3OcJAC3+3XkikQJvp3naoOKxhCXv12qmQNgJBKXH0+SB//1b9QdYP6QApSU8lmc1oYLwV0pcdiRnvMNpGOAwUsPlFbbHQ7W1NSFX1N0IOQYY7/y6hiP5HQkuCbcWd8nQcKHTTxHMs6Q96Z63CuWVB+q8T9fHwPhzPWMvYN7Q6S5inob15hkOh1310WbKy2mls+UoU1GJpLfrpzc+TG/6iJ1hOJ7983WhSWnxsnso46tAWw9pBCAcsn3BAVsOnNhyoIxr64Hywqr2eyjjU3IqQak5VaA0KjJs3vYFB8Bh6aJyq47W+J644B+rN61PvW5B2nULtn9/Qcb3F+y+/juZ11+ddcPV2Tf8a97CqwpuvKroxquO33RV2U1Xld90VeVN/8K04gcE8Pyaum34Kzusgp5YetNVx268qvDGq/IXXpV7w1VQctYNcJXv7LqeXBGum37dguOvv3z1x/82BsZD+i7/cEFTS+/9r+9+4O1dv/rTjv9OSv/NxtSqqpahUFBkfNL+44TxdXrGd430blxEAM+64YHxnO4y1Fv23pKwZFOLKeMp5pszyQHNlPfRFDXE7ykiBDqoTQM47BqwifJNYc8wT0ivSEP6YakDJKbulW0azfuTbku4McXPI3sd44H6BPO3ZRYLmXwxq28T4pPQn85DwGUzIUHM4M+njLfoMmC8VMu0PTjapSseT0h4PN9qsgTxr/41txG+QoEFkDO4LbMglikW9HU2O1dfbB1h/Jo6sW5qHaLdl5M74sfMtljWKcOmmJQz9krHPKTrIWvKxt/xB+rUXnk28s7DLnk+iP0sCuXlYfbeRvPy/arRuRbzwiS7JryPNaY3Dr+H1L0S0MszTkaN6eWZc2ZNes2EOd2SzPj6Hkr3atA2QUDEHtsXHABQ33rgBNe2gxWE8b/5Q70vqNC9Oi1XFhzfbPuCA9Jzq5m2Kyqu9T1+8Xk1W5PTb742/dZrM269duet12bedu3+RdceXHTtoUXX5i+6tnDRtcWLrj32g2vLfvDd8tu/W3n7NUziFUnsvmSJbg87rOL275bd/t2SH5ASoKgji67NoyVnLbp23yJyLbgiXBeuXvrOqqvP+zunjGdjpw8eygPGP73xwIN/Sv/JO+vvWP3+He+/Sxk/0ElePojjNx4p2FqaKzJeTdSTIB4y7TLgOeN7x+R4vXesd/PihFvSexn7hf3srdTbojI+ewVPgK7KZrwnzJZfzxaRPSQxsHjVs4vJTthD3sovlvBnfQEs2+/fuJiE9WR7hOy/Oc3fMyJvP1PoJ62TNL+c+S8k6DoAUT7N1W9ogs5+kqv/Q4F04MWEhEWZZQrRs+DtixWAdrLBXosyS0kO379+UcJNqZnQi89evC+/JJVXctVT9HTI5B+DnYsyjymh/DEax8Nbtdv+MFRpSVI92SNm8hdu83PY7yHhPnut2h2qeCIh4YnDcnq/aBspsAh4T8pZtRbe0hccQP7EXi9UKGkAgkz5tbyCtAnqMhcmLFm7lfu/ateAVChk3YHlTQP+tbcpZ92WWQhnUajDkaxVsYsi37yFQY7UXpGfov6BMJ6ebqge3SP/lRS1ZG0dOZLUkNVErozJJYS7IGeplSS3TNpVcDrZqRhLboe5QS+hmsPfkp3EioVb/eqNK+fTSlKjVCvUg4ULkROU++XzRAm3qWZl9G7QQpjt9EKyA5rDWMe82CvPBt/JY+xpWKZJ159BxpuNsZ/TUN6NOW5tn8TTwJtgWxfNa57oM4/srWAfdfZ7ef0IefpbdWJpU9I7f5jePnVvOuoeGL9o2T1ljb0pubXbcpjqUphy63718Av2/fEP/W75tuwqUSmHqoprfPf99pkGXzA9r5aqLj1f1mPPkwfWbQQHbM+v49qRXwc6Vtf1+KWfqU1PyfjxLTuX3rJ76S2ZS2/Zv/SWrKU3H1p6c96ym/LvWlh418Kjdy0s/enCsp8uLP/pwkpFK+68g18OtmG/cQ/srKAngo7dtbD4roUFdy3MX7Yw986bspfeDFfZR68I14Wrl/1p9YJPfWx4SjuXLcyBY3w+nj8cxRh/+6tJC1e+c8sbby5a/drta1ayOB4Az3L122v272rYzRnPh9OTsfSFryckvH5QCeIhdjdhefHrCYv3VpozPsIYv7lF8hcTPGRDZM/F98iwJ+BnUGe85zkAMb4vp70DbA/ZXpxZDtusraBurzqgtAB0jO/ijKf98cD4rkagPtkgUbsyIq+zYNVNqX4aypOheWSbMh5gs76B5PD30ZZBCYzXO0IuDbwnPfQkRS8zvn2w4imKcBbKc8arnfT1cDBJ11PAr9rDAnrKIeB0S8ifSH/NCcVl2TCe4BwOk+nO0E7bEIRbIQqSw3SIH2enADy2UwaYQHENUGUCEcYooNJgT0N6gcpi4QKr5PYELUrkHN8WAAaWKvhUq+TgEpqGCL1fodGgtlT4YRzhFPnqi1OcHUDuQtPOoCaL9VE8tLhfdSJITVGyw6ZuKFarn46a52gIyqP5eLqejbyzZzyMvGPz4bj11Lhz5snJ6jM3/53X4++MAxGMjIc9QjVcS+CzyXM45ukD9HShKWUViagxvekEeead9MbUvfIkPQvoByalH//yv0vqOrcfaU7Lb0oXtD2/afthVTsON+2APflN8kZew/a8hvS8+rRcUB0onWp7Xv3R2p77fvdcU2co40gTaKdBu440xaSS+t6nv3p+/e6MPXffkXn3HfvuviPr7jsO3XvHofvuyL/vjiP3Ly28f+nR+5eWPLS07KEfVz60pPJXS6p/taTWWjW/WgLiB8A2nAKC00HHHlxaTMvMv39p3n3kKtn33rGfXnff/T8p37Tums98ChhPJrBR5rVL0DFe9yQ0Y/xNr75961uvL/7jqz9MXLF04/Msjue5+rq+OpA144U4XmU8h70udufxvXIATeYD41mIT/hdLGNeCOvZ7ylJ6dM4PrNCzur7N9GAXg7WjYP4lM5+2k9fsXExifVP0EZANzDeLI6XGd8IvfIy4+WQncbupRB80w2Snye8l1+c8bAhZ+wJ2lftY7CngTvTXvaWcp2PvOOM5/3xELu30Ph7zyBhuT52hxF5SmQpDMqzi+N3s056Ho+StwrayYU0L8IqbeSqBrtipC6jTghwNZG0LnjVokuI7xUw62JW5a0Y8dNqUpRqDuYs5IzXpRAsLqEkG25bogJeSBtoomr9jWvuWojjdXfBGzqa2N14C7o7knMSQlJEbiSZu8E+WfJ/RE42GA6DMf9nMePPrsF3c5mxV3vfKdR1sNdM5u9eV70W8+RJCiekN502RzPjvYNOev5wHWP83b95uriyeX9J5+7iDp32FHcQHZWVyd4yFbWBdhe2UrUIai1tDDz4+xdbe0b2Hu0A7QMd02v/sQ7nKm8OPv3NS5qz9h/87QPZv33g0O+I8h++/8jD9xc+fH/x7+8reey+ssfuq3jsnson7ql58p5a0FP3NFir/ql7QPwA2Ibj4Sw4HVROS4MyoWQoHy4EYhfNe+qRsvTtt112EWO8PJNNf0TDeONUJ4zxt7276vb3X/7RBy/esem5n2x7Chg/KPTHnzo5DTLP1bMcuNAfL4TyKuYPQRJeHoinTd1D/z2M0Ut4/ZDaE89IT3BOGA/j9bSd9CLjlfCd5OThpU/Rk7Q8A3nmM3S8/Ym0JTenVcCeZwph7L2G8V1Krt6U8RC1A26zFOr7hlnIThDeMeRfR1L0gHa+QXFOGb93UIG6MtpO5HobpTiMvNONuWOz+ZI8PBldb8745hgZv8uK8RAoaxPspuloc8ariWvihpyiFxoHNCuuD4iNOXwHjDcWokWpcgtxMl5tOoiLKbBUAWe5cEVd6l6Tq7divNKPoJ5r0abhfRY8GSCOnTT9sNR2ich4YhoMDmBd8mdxrv5sHHw3J5jXtmyEvAUnvXHBHqsReU7nzxEG5QlT5chrFHlBej5njnHUPYziWpWYtnzVe5VtQzmVfQdO9GaV+XU6UOY/cIIKNlR1Z5V2Z5V07SfqzOIq7apqC/36iZfb+8YPlvuzqQ7NTjUdQ8/9y1dbc3Py//Bo/jOPHnnmkcJnHyl+9pFjzz9S+vwjZcsfqXzhkeoXHq596eH6FQ83rvwdqGXlb1pjUePK38BZ9St+V7vi4ZoXHq4kIiVD+ceeJZcrXP740VeW12zdnPJ+0vK7lomMB6arjDedy4wx/odrV/x4w/Jlyc/8LPWJX+z4PTA+NKCMuQuFJibGR4aHLcbcRQCcNJIm4+rJsDvIzJOB9OL4+YifBOuvZ/OR9mwUHhmj10sCcQbyolVyBn6UnEuATRPsMrkhIqcZeDX9Tp+7e4Z1twtd72SEHZy4KPMEHULPqie/JSAnNIJ+dxhhd+Al2tFOtv0bKLOzxGy8SnSI2mlf+yLSg15CBtOpj86z9Dswvn3Q/wEdRic/KK/wm4Jczsm3kvQ7IbfS6U5G3tHEu1RMu8+VEXY0D0+62EkenibYyW83CdlZrj4fxtPJPa9FMhLgB12Mmymf2OgzceCbZrAYT+fSg+WxcjDIiw6p0w4rUwemCaUVbF0ljzszHMxGwDXK/eh8jB4UToeq0ShTGU9Hrs6OJ1dRRsyRYW7yMWbVU+J4NsCNn6gOjrO5hDJmkNVfvjVyC4oJ+avEuvFxf6Rw5pLtmDv5UQI2do+m6JXRefROb1MKsbxfjQ/KCD7bD2tAHppHTWNuy6ZRwMNzfau2n71j7qwH353xye/mtmOe8NtAehPMs2NiD+uNXfUkoJdXo1dXH45Ceu0jdqbD8YyL1ZouSF/dL9X7+n/4swf+sPLtY1VNHcHp1sBUW7+o6bZ+naba4JjAJFNr3ySb4l6ZlJ7sfOz5N4YnTrcHp0BQ5uz1yr9/K9jc2ro/s31/Zsf+Pb4soq6sPd1Ze3oOEgUO7QIFD+0aoArFLjgLTmfl9GXvIsXS8tm1fIcOlGXu2fzO6lu+fnlzVxAmoBNpThl/+s9Wk5UezMmvrm17JSP11V3bVu1JfmPvprf2bygpqeaMDw0MjI2ODA4OWj07R3rlm8njc/Jr8d4KwnIt48cIy5VH5iKaJDwhN3uAXg7HSTlih7pcrjxanjH+hPJE3AE+TI/vJGiH7IL8oDyNy8nYOjpsnqTfIVUuPx0nJNv/8CKL1NUed58Acki/s3FzLBUPYfpxdRjdkhvlEfLaofJCjE4fhGOvVU+y6FyZ+oagnT4Kr46DYweqo+FIjn2XWoI4LIv8srOXzFQ1Q7vk8eXKCHMj42vZ+joUG3l0W3jgW35cTft4mPCAGXnEi7zI82bKNq2A+nAXPF9HH5Rneyjz5Bd/Fk730LxyrlpgwvJV6rNzxuoJlyZFK5cTn52zuIRQH/rInHpr8lXgST/yIJz8Eh+rIwfQ5wCjPDsnnK59xI5ZITwQaHa/5OlEzYt6q39WkB1Bi6KXkx0QtgXTYCohh8/O8cXo5urZOV1/v6OJcebmcXkvprKPPuWfYRSC2jFvNkBh9qQnPfQGzEfP3ps+TK8deO+E9Ce6T7YHJ95N3nff75fD+Dud4Mk6eIBeK9gDunvRnVy/XHSnrMV33g26fdkvuX647O7Z6+eXfWHRl2UtvuQLiy/94u2Xnn/7ZRf88CsXLLn8S0uuuOhHV1z8469d/OOvX7L0G5fc+Y1L7/zmZVRfWfbNr8C/sr4lb9zB9ihvl37zK6Aff/OyH33jsiVfv/SHX7vk9isu/sEVFy++/KJFX7nw1su+dMul54Pu+fblb/98WXdosiFwSkfzKIzPys6bmTk9Njo0NkI0PjY2PjYyPjo8PTV5cnoKIvjR0dHh4SGQOAcOPCIvz1FPZ6cns9gqU9WaTmQLOymb95ZbzHSrnEXHw8c1/53uyTcSo79UodupewROndtOmNmmo4HMc7euQTO3nZh7Z2G6OIGdZjK7kNSqSPeoG33ajYbadPibLLGD3GI2G9emsnEwj43jCWrspsmrZ4O8LKevsT/3bP7rbCe6iWOKntl/IrHOgcOns52TOXAcMP6MR/PePkpnGItgYDlr01gG9LOL6eUl7NqA9GoozxYoipv0psvSWy1sUx0gA6ihb14nGHUvKAIT5lApOyekgYmwTqGJMNGkNKgqMjilamgq4qWkoalZaXhKsheQ1xiuR2H81vQ9AG+jcvIL8o4U5eQd4X9KTs0orO/lc9mSmXDoEnMw97sO8/qp6WX8s9hanaaez1ev3ZBnqXM0J50yna1xelo6IG7VfuHhdXGKOpspa0iAvijzOJuYVmV5xZMJJA8vzkerIDzcEpLVLGzAdvNAuAlUt2fhbXsKQzDVf5j2fEMgHm4cUAWx3Q1bexqDYVCDRubTv1j96Ls6AW1sM8gaZ1Qlc8pGmSDWyRy3s61G1KleYz4gl6QoYporV71ETeb1sc/OG3MNtfP42s9lK05ZT1amUSbAmZO5bG1G7Dt6Yn5On6bzFvPR75enLrwgfXaLslgtneKQA16DeWXsvfNH7DRL2BknwdWOujed6J7PgEumv+2OHO8mMzqUwLS4XTOgY75TR30nmY5RHe88VdJ1urR7pqwnzNbULvfrF9Iky2yaLcUZ05pYmuW41CVAJXllcGFZ8KpYtqv7JFXaNcehJUQVO+NLfZO51b05VX5RuVX+3GqivGp/frX/cA1RQV1vZfckW5NGXlJWmPCOk75Lt/aM+HYW69DYLGfnZIEZ09VlxJVtoclCHlgnL+g716xIK2faSSe6uhCtsoSMEo5bTygLQ8xY17KcXM3XTiVrMXU8BbZ+kRjTPW6sHOPC2ie6JXEdvI26XA1f0uaMVM/di/b+kSb/r9/S68AZNy/tcE0avvTcXK1JE/WRvOjYm1PGz3HHvEUo74j0sYf10E+vYr6VYD6mmJ6sbUMnvbcfeK97vk5cv44Px7ObF48sYQeYpwvZUcYfZYzvkEUY75MZX9od1mAeSK+FvbigNt+u7I2YyGI9zDOHeT3po8TxVv30NfTxO5u1ZWHBNEJ6uhIrXzaerEFntbasspKs8wVko64ba7o+rNXKsDBOIfpqsMra8OoisMrKb7pFYMlwZSbjhOEwkEQRD8KsVmCrISOhNIJxKETWrTb+kcWx6iv7XsbUYvXy4KiLz7IDzp4Kn3s1YSELX1uWrTh3pteWjQp4p4/SzSvMG2/WLqaPkfRsOB7N25MViYhsSG/7ML1+xnsfWdjQGNOz1L3pWDzjavQy2hngKeOPdlLGK4AvJhvTsIeG8jMQygPmSyGa7yHRvKpe6USvVG6hil5JqwjgX6W+2Q+RSnqXonlNKM/CepOAPpYxdzYLh2sw3y+vXA4rmsNipgA8oCDEsmzddMJOBfYyd4dJJt9qjXYxgLbcpsvXWi3MKobUpmu3s53OF2yF9Vi5rBZmVSIwNQCtCUhM/GNguRp4a5q0IcQKUPVJFVYSvmfKd1GfboI1RSzlJ1ORmwrmPDn7JJX57QV1hgPOwpqfM1Wic9aSJCejOyRF2crxEFexie34/LVzteKcE8Y7XZhuTsffnTUZe91du5LAl0fdi5iPj/QWw/Gipu5Nl7Th098C2knqngBeOkYZX+w7BWinmiZqnwbkQwL/eNdpBfME9hDQl/lVnfBDGl+vcn9YVW+4vDdcQcSRr5DeHvMQQRHSKz/+sBFLop4fHCvm44zj5efrhWieEI5mjwkCBdIz2LOwXua9BZttYGz8U/Og5ZJrMFqNzsimkW5gmtUCHmJnNu/A1gfZCrk18DZ8WjTEVFAtNAyhnUiaimLjUdzuMUFaqV8i6tFIWYER1lqerfiqjrgx3xxgP5Gs3x3QDmGTvGC8QHd5PVm+bPwcTVPvhPRnUcZ+Tp6Yj3K/9g2a+MJ6cU5cgnn6AL0azUeN6a366Y2ktxh1bxXQ66e/BbTTL/MxmfGnGeOLOqaL2gHwU0VtUyrmOxnpSd+8qDJAPlcP4J/ohFEc+QLs5YDeEeYV0ivUAFLExHs95m1D+VkxnkyYRzFfrUybx0lPYD8gw55F9o0hEtxrpCS6m9gBsYk+XmwYCm464kw33ExktpoJj0Zumdn6dI2a2GHwhrQPDz0Zm00Y3E0GhjCJWSb67aRiX1b640sEUzwqEhuzjrY7pWILyT1eLCGGmpcOsB9QmIseonYIpFjgzobX8cfkePjOJq+dk3VonAB+fmbsLSfG4QiPmrqYTVjPMc8entTAPpbsvU0nvc3UeDape0Z3+J0k/0KivvN0cccpBviiNtBUYdskwzzJ2/tOkYAeSC+opAvS+BqVdp0qhXaAorLu01wA/nIQg70c08cUzQsBvSuk12NeTdfPlvGQfJDz+QLp5a56YVAYC+5F6tukvo3JcL5HO6xMHlbNmU2ALaBajLNZtlxsKzFmy+qVKhXxDAzvlZHh3auHN+f38Z6wrO7wcapjTF3ho4qKu8JEneEiU/nChaI6wwVMPlVHfGFbabq1yP+TDkupaz/D8s/nhsKHO+x1rtzI2VVP3jkKCXmWk9egXYndOd3PJsBbzH833x6li/d+4yA9xPQ8Y08DeoJ5J6QXp82xH3hPfo6iBvTQHBdG3atD7nks1Bku9p0uAsa3nywkjCeAL2wlKgLSt7OAnqbuSfaeDbnXqKTzpKqukyVUpURA/VNl3SDCe0p6gnmWurcJ5dmwIW33vL7HlsHIeUDvcJj9rBgvjupSe+61sOdD89QB3spgvViHEPNJ9oUNtbeb9HNoDdJQHNLmJj3ZJArnAy7U+FvIirMoXBNtqxkhaDYqFIdvlSJCcQHYppw+7AuDCLMN6MrvCOuU1xE2VW5HWJCUC7/RTPSX2lR8bYlzbYOtaW0jWDZDXff6XLs7dc2PM1BzOhs5fyCKjKVSfrtltNPY/eyj+7xdfNbpE/NRA/r4nqoXMC8z/syQ3vhwnZrvpIwHtZ+EOL6QMr6AMl7GfNskZO+JOqaOKjrWMXWsY5rpuE+jEt+0IsL+UhAhvYJ5Z6G8HvOke35WmHfYMR8/422Gbet4D5l8nswnuX1FNgP6jH8yuRxpGamBuG7Qozo2kjwESVPo0NUNwytAMKJSUUn3DFW4pCt8nIkF4jxtbsiT87R2YWeYiVOcxdk84pRR3R7Obw/nGdUWzhPVGs4VlNMSzmmdOcTVImwb1oZS55tslQ6ZKbtFil+6jBy81ZVmPMB0T9Q6RLmQ8pAuvX1bOb5Z8YpxVI+fbnNuVPecnKsco8422hw+aBQPs8QNzWEzB5tFkULkyc9hAVMi6SDFOcvJn8VcF5P5jia/OxNj7KFiDjsd4jhMe9fRnqaLyvuY5sQlAb08s70G87ON6c066a2G3PNR92qXZSfJ1ZO3JNyaKeogoXwhDeUL2qaA8QTzJGMvS8a8lvQ0vqek92nEqC+TnjD+pBDNs1CehJFRQ3lNNA9BqRbzYlzqMKCPGs3bMT4wHhmYMFFwIjIbmZZpv9PkcuORoCwpOC6rf1zSa0zqH5MCssKBUaI+rXpHw7JGlA2yRzKVbgkcut68RvJatHwyvmGpW5E8Re4wrFmn1ZDURdU5FBblGwormvENcfGdphtk4Voq/le+x/kGnOv84Lk80uG9z2WVBMMHwz5R8kfgbmXkS3QMhjsGZwTBW+Xq7LpCTQwHiyfOtA+GQeSYIZBmAkd8iw5YOUB+IsQ5xLTbujlDjW/Jb6AyR5lxQ/8rypYM1Ur3U2z2NuwfAc0QDc/0DJ8G+ZlGRM30jpirb3TGSoHRmcBYWJbKHYVKMSBSCk7MSgNkRj9VQG3d03SWjIdDP9i26ye/euIc1kNP3CXr8bsefHzZg48te4DozgcevfN+0O+1epTsf+BRdsyyB8kpdz0EIoX8hAsMEd9G29afDsfrLKUliPWkVaW1VSosV4lVjNSNVE+oIa0nq7B8rnK6+lY9QDiMFWUl5gCvm26DmcMl/9VojlCCcrBSVV5n7rPZ5fQ1F+9U3parweog1EpjCHNVKU35ZDXVE53n5sv+mJ4oOy9/XvwD0n5SZndneVNGS+Wbku9F+Q7Q76oo9Uti/s2hB5OvvSD5C8+/8/xrL3znz+lfAKz8fHNA/TnV/OYv4/9ZdP8F4K3hv1LUPVCa+FPMSSH/+p1Rzz/YulOHeUvGQ2ANNNKtfqG+fdbyL3H+wVhg1EtEPUCsiu5g+3NjKtnqhufgEk68jsNYJ8XiMegAOoAOoANeOnDy5Mnu7u6+vj5Y9W1YeI2MwFKvw/Avf8HCMWNjY8FgEKgNYb0YyjtgvBWrbPbDn6JKZ00cKDJiW7zobMq3L5lfhV1Cd6f8uq4wPqqNNrcs1k2sFTtFfEW9ipffYywbHUAH0AF0wOjAXDGeocIIMyMYOPN0/DDW3ciYqMfoDuBVMmWqka98jxXPrJjHb9/qOyhey2o71ruz+b4bb820cHabojm6PTaXwD+hA+gAOoAOnGkH4mH8QzSOF+a4dRDHm0LOhjSx8tsIXeasbr/Obn4Vmw3xFCdo5NfV3bL9uboKGG+H77Gvj/39irSO+s0zVtj57UctHA9AB9ABdAAd8N6BWTFewbwzxlvxVcdCkZGmnDby2FgCO0bHJCdvrQo3stOmNCc1tHJDLNaKqbrKsLemvll9gaxKFo83HuPkLO+/sngFdAAdQAfQAYcOxMF4GKILA/XlB+rozG+WjIfH1SzH3NnDTISW1ZE2JbA/xYFh0xO5l1YF2sBYPNfIZl3JpuU7LNwLxosVNvrp8CuGh6ED6AA6gA6cIQdmy3gaypszHiackRnPUWEKSxHnVsxzzmyOOiMaTS+kQ5fVMSJBjajWsdD+Nh2aYF8TJ9W2ahyI5zo5hh9veuPsr851hr7oeFl0AB1AB+ahA1aMHx8fn5ychH+N4+rh4VuYMKaqL8znxjFhPJtRThPHi9DSIUEkqHHbyR4dq0wBacUzcb8TxotfE9MyrYCn+37ZX9cKqLyQqNWOid/G776xfNMrWv2nsbn6PPx/hreMDqAD6MCZcMCU8fCMHAD+61//uoh5/uwcPKzPGA/T5DHM6xnPp4w1Z7wpI60gDQcz2okbrAQdcnRQNLLQ/nh+CVOI8iva1NMJJk3v3XgvVodZ1Y3XSnePVl8pJ3dhLMph4cZPx6oauB8dQAfQAXTASweMjGeAP//886+88sply5ZxzHPGw3xcwPhKyniGeZXxugnhozDehhkisHX3b/onG2iZ8s+Kx1GrxHhsIycUN1LQ/rqm34CoXNd5YlUxKyTr7pHdOH+ZFm51gNXBNjX08kuPZaMD6AA6ME8c0DGeAf7CCy9cuHDh448//tprr7300ksM8yLjYUJ3znjAvMx444ovdoy3B4aR2UYexMpFY5lGYpmWyWing1wczNNR0yERbUBorFVUDLNbtjfTyTFW2DZaalOaza3Nk/9/eJvoADqADnjpgI7xgPMlS5Y8+uijSUlJO3bs2L9/f15e3r59+2C/mKufBePtsWRFCFNO2PAsKoHEAnXlGGtoWivdJayoyffb8wz+Kl6XvTWV7ttgUw2bKzqBq9Ud2TBbrJv96V5+p7FsdAAdQAfQAeaAaRwPRNe9xDie9cfHFccb8WkFVFPu2uAtKnHhXFOwmZ5ohUCrq9iXbHWPRiI6qaH9WTrfrL7mURkfldBRDY96L3BA1Grgf1N0AB1AB9CBWTgQ17NzjPGkM54prly9DrpOmGFzDAOGKKMpTshtTx1T8jmBme5mndfN5kRTnEc1gV06KlxjYnxUB/j96uoctRqz+GbjqegAOoAOoANxMf4JOq4+VsaLZjMU6V5GAOiIZXxrCg8dw1ixNjjRXdf0S2EsRLwF4+2Y3p3p7bDLOaxe1Pt1ci/2lzP9q/2HZfo52tyRqcO4Ex1AB9ABdMBtB+JmfGVvfIw34tCUW04I4eSYqAQ15ZMN5hkCTS/NdzqvmBWzxQrExFeH34+Yamh/s/ZeOawPHoYOoAPoADrggQOzYTyk61nG3lmu3oPaY5HoADqADqAD6AA6YOXA7BkPmEfG4xcMHUAH0AF0AB046xxAxp91HwlWCB1AB9ABdAAdcMUBYHxpaWl6evr72teaNWtgB/zLX6mpqeXl5cFgkKw7B+Pqe0mingnjeFc+CywEHUAH0AF0AB1w0wFgPAC+p6dnSnmxJ+MHBwcHBgaDwYH+/mBvb5/P11lZWb19+3Z7xkuaqe76tGvSuFLtZ6M9IDfLq7Dy4cU3Zlmg7vS5Kd+jyou2eHcJdw3H0tABdAAdmMcOAOP/+Mc/Mr4D2sfGxkdGR4eHR7q7/T5fV1u7r7m5raq6tqDwaE1N3er3VjPGk3nuzOJ4YLyC+b5IleuM13HFC8zMDYM9akOIhnhhDjJ+Hv9S4K2jA+jAuegAYzyL3elKsqNDQ8Oh0GBbm6+pqbW+oammpv7Y8bLDh4sgjo/CeLIIXQAUqe6TpZmvfvb2GBnGYm63Xqx8ndwqnAPSu/LFqnrBeK/9cdFqLAodQAfQAXSAzmXLGD8xMTE6OsYA398/0NTcWlfXWFVVe+JE1dGjpfn5hRUVVZzxZA4c4/PxfD15xngP43gRNu5+ihyNXjCSY17ccLf+vLRzvf4e2YLFogPoADownxxwk/F8PXmAPQDeW8Z7hMm/AMbzBpAX32Ov/fGizlgmOoAOoAPz1QFPGK/Mc0vH3D30hGve6sJ3L0JVrxnmdfkYx7v2bcOC0AF0AB045x2Ii/FkTRqTXL2MdkjiK3n84IQEI/RcM0kXobrOeLEN4UU07HX5otGum8MTJ7q7cO3TxYLQAXQAHUAHXHYgbsabzlfPp7APV/WFYfVZaAvASrSuVVnHLe8wxnnmWtWVgjyN40VDvDBHtMWj8l03HAtEB9ABdGAeOyAyfmICRt6R0fUw+K6vr7+np7erq6ejowuG1mvH3Cnrx5MH5YiUOXDIhDgE7ZW9oJmK3tP94+FlDzzmpr1eB5GeMngOGCn646bvc9JG8aLCWCY6gA6gA/PYAZHxU1PTC77znV/+4hePPfoo01tvvrkzI6OlpV3D+AftGd8brgDA+0+X95wKjM3cef/v57G9eOvoADqADqAD6MAZc0DH+HvvuWfD+vW7lFdOTk5JSYkV48mic2IcX90XrmIRvP90Rc/J8q7pwOjppfc+fMZuDi+MDqAD6AA6gA7MYwfiydXTOB463NkYO5j2hufqOeBPneiaLvNN9o2c/PHdv53H9uKtowPoADqADqADZ8yBuHP1wHj6GLy4fjzpiZ+p6Dld3n2yrHOqpGO8d/jkkl/+zxm7ObwwOoAOoAPoADowjx2IM1c/QeJ4A+MhUQ/d8N2nIEsPQXxJ+1jv0PSSn/96HtuLt44OoAPoADqADpwxB+LM1SuMZ5hXcvWU8RXdJ8u7p4Dxx9tG/UNTP/z5f52xm8MLowPoADqADqAD89iBOHP1AuMB81rGk9F2U6W+iWOtI8D42//zV/PYXrx1dAAdQAfQAXTgjDmgY/zzzz0HD8vlKq+jR49WVVUZx9UPTEgwiL4mINX0EYlj7siIehhwV9oxfrxlGBj/g595wPhnPfMLShbl2XVwfXrvrMWS0QF0AB1AB5gD8eTqH3oc5qglq8j2SwTz2nH1NFffSRh/rHXYPzj5g5895LLXjMFevHQle30hL+6C19mLyotlelG+F58plokOoAPowDx2IM65bCFXTxnPJMfx5Pl40h9/qrxzijJ+iDD+p+4x3usI28gw7zDsBSNFf/i2i19uZLyLZmJR6AA6gA5470BcjH+C5OoDEWvGQ388ML6FMH7xTx90+S68oCOroi4I9uJCnsbZxltw2XqhOC/M8a62WDI6gA6gA/PSgbgZXxOI1PSDJBDE8f88dfrPEMfDuPrKnlMVXVNlHWMy43/ygMvGekcXEcAiL926gTmIg71uQ+gaQ245g+WgA+gAOoAOeODArBlPMC8zvobMZSswnubqF59zjPcOk6xkndz9UL2rPK+nd20sd63A0tABdAAdmPcOuMr4ADB+hsTx3VMnfGPH6Zi7cy9XDwybg2jVC1LOZRti3v/PQQPQAXQAHTj7HYiT8ZNSbX+ES4njA+Hq3pkq/6nK7ukTnROlbSO9Q66OufMavTrueoFhr6NhT+N40RBPzTn7/99gDdEBdAAdOBcc4IyHZeNHRkZDocFgcCAQ6G9oaIZl4ysqqktLy4uKj+fmHamoqFr93upgMHjXQ08McMYHI7XBCGX8zJ9rA+GaPmA8pOthGpzJMjKXratz4BjjVNct1l3C9fLFZooXmJwDxosWeeQPFosOoAPoADrghgOM8RMTEwzw/f3Bvr5+v7+vpqYOoF5aVn70aMmRguKc3MNGxtf1R4go478NjK+hjCehfC+E8pCuHw/AmjQ//2836olloAPoADqADqAD6EBsDgDjt23b1tPTMzo6OjQ0HAqFBgZCEMq3tbU3N7c2Nbc0NjbV1zfW1tYfP16anJwsx/ETcq6eYV5mPMTxJJQPzNSQXnkSygdGT/7ol7+JrUZ4NDqADqAD6AA6gA644QAwHiasBcxDHt5eAPjs7GzO+LoAoTt0ycuMn575c12/RBlPo3mSsZ/uHz299J7fuVFPLAMdQAfQAXQAHUAHYnMAGN/d3d3X1zc4ODgsvEZGRuAd/MtfEOiPjY3x/niWpWcicTxjfF1/uI5F8yRpfyo4PnPHfY/EViM8Gh1AB9ABdAAdQAfccCA+xocmgeYGxtcHYS/BvJy075sZGA8ve+BRN+qJZaAD6AA6gA6gA+hAbA7Ey3iSoq8PypLjeGB8fb8slreHOW+XPfhYbDXCo9EBdAAdQAfQAXTADQfiZny9OeMB80wkoJeA8Xc99Lgb9cQy0AF0AB1AB9ABdCA2B+JnPATxA7LkOL4hKHGxgB5y+vA0fWw1sj/6WWVhWb7hYumsTJ1cLB+K8rRwXr644UX9vSvf3dpiaegAOoAOzG8H4mP84GSkIRhpGJClZ7wcygcJ439yzjGefyFcb0boCnS9fGT8/P7PjHePDqAD6IDOgTgYD9QOmTK+MSiB1Gh+QBoExv/KvTje6zjbawaL5fN7cfErOTf+eJ2KcNEQLAodQAfQgfntQHyMZ3F8I2iASI7jGwekBq1cZvwcxKnit8H1OJsXKGLS3e+f7hLuFj7H/rteeSwQHUAH0IF55kD8jKeJesL4kMB4wDwXBPTnMONdB7wOkOJbF79zyHgXzcSi0AF0AB04xx2Im/Esggc1kTj+in+enoG4PiyqIRgGxrs8rt5rhrGP0wvA82I9vQVPC8c4/hz/347VRwfQgfnmQHyMH5okaOdK+PIV/wSMr++fqQ/IqgvMgEITMAeOe8/HM4Dp5Pon5hHgRcZ71JLw2h+vy3f9o8QC0QF0AB2Y3w7Ez/hQpElRwsWXf2v6tFTnn6oVVOOfGhg7vfTeh9102Os41bsg3liyF40Jr/3xunw3vytYFjqADqAD892B2TC+ORRhSrjwsq9PnQpXdgwzVSjqH5n+4c9/7abHc8AYL9DLLZizJIRHdzEH/rv5dcGy0AF0AB2Y1w7Eyfgpme4y48//8lcnpk8fb+wtaeyFf0HHQA29vYPjty67d14bjDePDqAD6AA6gA6cIQfiZ/xgpJmqZTCS8LkvXTI+efJweTMov7w57wRVWXNXYOj7i+86Q7eGl0UH0AF0AB1AB+a1A3EzviVE6M6U8KnPXzA6Prn/SBlo32Givfml+/JL27sD//792+a1wXjz6AA6gA6gA+jAGXIgbsa3Dka4Ej72yc8Oj45t35+bTpW2Lydtb07q3kNN7Z3/vOD/nqFbw8uiA+gAOoAOoAPz2oH4GD88pQK+dSiS8Hcf+8Tg8Mjm9N2b0ndvTN+1MW3XhtSdG1Iz6ppaLv+nf5nXBuPNowPoADqADqADZ8iB2TO+DXL1H/27vx8YHEpM3gZau3nrmk1b1mxKXrMxubqu4cLLv3aGbg0viw6gA+gAOoAOzGsH4mZ821CEK+Gv//Z/B0Oh99ZveG/detDqdetWJ617Nympoqb2Cxd/eV4bjDePDqAD6AA6gA6cIQfcYfxHPvo3wPjV6z94d13Sux8kvpOU+E7i2rfXrqmorv7Mly5w89ae9XL9eKiop+WzwkW5aQ0ta27KF41y/RawQHQAHUAH0AGXHIiT8dOR9iFVCR/+6P8KhgZWr096d13iOx+sBb2duOatxPeB8Z86/4suVVVgmHeMmQPGu2mHtixeebZb99aV63rqjys1xELQAXQAHUAHFAfiY/wIZ/xwpH04kvAhYPxg6L2NSas3JK5eT/TOurVvJ71fUVN93vmfd81tXZDqOsPmpnzX7DAUJBrC78XFy3ntj4tVxaLQAXQAHUAHEhLiZnzHcISLMH5gMPSnzev/uHndexs/eG9DEujddWsr62rcZLwYm7oOeF3s60X5XpQpfol1QbYXl8M4Hn810AF0AB04dxyIm/G+4YisERrHDwwNrt26cc3Wje8nb3g/eT3h/aZ1VXW1513gXhz/l8F4LyJsYwNF9MrFryMy3kUzsSh0AB1ABzx2ID7Gj05HfCORTkWE8aGhwQ9SkxNTNidu25S4ddPaLRvXbNlY3VCHjDf/BL0Lsj3FsKeFe/xdx+LRAXQAHZhvDsTJ+JMy4LtGIiDK+OGh9du3rkvfsi51ywcpyaCkrZtqGuvdZDyPgMUNFz8xr8sXq+op43VhvVsWzaU/btUZy0EH0AF0YB47EDfjCd1HibpHKeMHh4c27kjduD1lfdpWEJB+XUpybWODm4yHz8nrONLT8kWue8d4/m329BJeFD6P/x/iraMD6AA64IUDs2F89wgBvMr4zRlpm3akbExP2ZC2dUPq1vWpW+uaGnDMneZj8ygDoeM6v4rrXxlP20Cu1xYLRAfQAXRgfjsQL+OlrhGibioax48Mb9m1fcvO9OSMtM3bU0Gb0lPqm5tcZvz8/rTw7tEBdAAdQAfQAecOxMf4sZMy3QHwPaOE8X89NDKcsidj264dW3du35qRnrwjLXl7WkNL03lf/Jzz2uCR6AA6gA6gA+gAOuCWA3EzHtDOlfChvyGMT83clbp7Z8rujJRdO7YR0m9vbGlGxrv1UWE56AA6gA6gA+hATA7EzXj/qMRFGD88OrJj357te3en79mVtntn6i5QRlNry3lfwDg+pk8ED0YH0AF0AB1AB9xxID7Gj58kgO8FjRElfOh/EcbvzNqbsS8TtCNzz3bQnt3Nba2f+Dwy3p2PCktBB9ABdAAdQAdiciBuxjO691ERxo+Mju7K2rdr/96d+/Zm7M0EAelb2to+8bnPxlQhPBgdQAfQAXQAHUAHXHEgPsZPnJTpLjP+r/76I8D4zANZe7L2g3bv37dr395de/e2trd/4rPIeFc+KSwEHUAH0AF0AB2IzYH4GT8u9Y1LAaqEv/rIR0ZHR/dlH9x38ODeAwcys7KY2jo6PvGZz8RWI/ujnz2X14+HW2P153fhpjW0rLnxx9NbcN0TLBAdQAfQgfnqQNyMZ3QH9cuMHxvLys7efxB0cN8BIoB9OzD+08h45cslot0jzHvKeF2dPbqF+fpfEe8bHUAH0AHXHYiP8ZOnCNqJJogS/urDHx4dGzuYk3vwUM4BUPahLNDB7A5f58c/9WnXKi0GwV6Ekl6XLxrhBSC9rr+xjQJ78IUOoAPoADpwtjoQL+MjwQmigUkiwvixsbFDuXmgbEJ6CvvsHF9n58c/6R7jwURP49Q5KJ9/D7xgvNf115nv0S2crf9VsF7oADqADpxzDsTLeCk4IWuAxPEfAsaP5+Tl5+SC8g7lENKDfJ1dyHj9d8KLDISx6eAFgEXGi+2Jc+5bjxVGB9ABdGB+OBA34wHtXJTx4+N5+Udy8w8T5R2mvM/r7Or6+HkYx5t9lbxg8NzE8V6nUubHfzy8S3QAHUAH5sCBWTF+UgpREcaPj48fPlKQDzpckHf4SB6FfVdXt5uM5xGwuOGiSV6XL1bVC8Z7XX9dBsKLW3Dx08Si0AF0AB2Y9w7Ex/ipUzLdRcZPFBQWHQEVFB0uKDx8BFTQ3dPjJuO9jlO9Ll+EokeA9DTI1tXZo1uY9/8n0QB0AB1AB9xyIE7Gn5YZPzgpgWgcPzFRWFRcUMgkw767x4+M13xUHmUg+DU8ZTxvA+kCere+jFgOOoAOoAPogKsOxM14RneV8RMTE8VHjxUVHwUVFoGKC4qKe/xuM97Vm8fC0AF0AB1AB9CBv2AHZsX4KWmQisTxhPHHjjPMFzLSFx/1+3tdjuP/gj8KvDV0AB1AB9ABdMBVB2bJ+KEpCSQz/ujxkqOAeUZ6AvtjyHhXPywsDB1AB9ABdAAdiMGB+Bg/fToyNKVKYLwW88j4GD4KPBQdQAfQAXQAHXDVgVkyfhhIPw3z3H3ow6OjYzCxHcxiSyayPZiddSB7f9bBDp8Pc/Wufl5YGDqADqAD6AA64NSB+BgP89WzuWzZbHeE8TBt7S/ue+Dn94Du/9kv7/3ZL+796S/uOXDwEDLe6UeBx6ED6AA6gA6gA646EB/jge6VgUgVVXWAxvG1dfWXXvHNL3/1Gxdd9rWLLrviS5d+9YJLvpq0bgMy3tXPCwtDB9ABdAAdQAecOhAf47uGpdwOojwqwvia2jrC9S9f/sWLL/vChZd+7kuXfPb8i9ckrUPGO/0o8Dh0AB1AB9ABdMBVB+JjfOewlNMm5bQT5bZTxlfX1nLAf/7CSz53wZc/c/5FaxI/QMa7+nlhYegAOoAOoAPogFMH4mb8IWC8gnnK+Jra8y/+CkTwHPCf/uJF7yPjnX4QeBw6gA6gA+gAOuCyA7NhPMe8zPgvXnQZAzxk6QHwn/rCl5DxLn9cWBw6gA6gA+gAOuDYARcY38Zy9TW1BPC0Gx4A/+kvXPjJz3/p/bVJmKt3/FnggegAOoAOoAPogJsOzJLxLJSXGa8D/Cc/d8GfkPFuflhYFjqADqAD6AA6EIMDcTM+u00CwDMRxldV10AED+PsIIKHLD0A/hOfPf9PazCOj+HDwEPRAXQAHUAH0AEXHYiT8UNSdqvEMS8zngCedsMD4M/73PmU8YmYq3fx08Ki0AF0AB1AB9AB5w7MkvEM8zLjdYD/+Ke/8EdkvPOPAo9EB9ABdAAdQAdcdSA+xvtYHE9DeZDMeBLBf17O0n/8M1/8GDD+fYzjXf24sDB0AB1AB9ABdMCxA3Ez/iBjPMW8zHgR8BDEA+Pfe38t5uodfxZ4IDqADqAD6AA64KYDLjC+lTK+sqqadcNDBM8A/4+f+jwy3s3PCstCB9ABdAAdQAdicWA2jOehvMx4Ns6OA/4fPvk5ZHwsnwUeiw6gA+gAOoAOuOnALBnPMC8zngCeBvEQwQPgkfFuflBYFjqADqAD6AA6EKMDbjJeB/i/P++z7/1pDfbHx/iJ4OHoADqADqAD6IA7DsTN+AOtEgTxTP8fm/wzgyTzH2sAAAAASUVORK5CYII=" alt="" />

图6.5 邻接矩阵表

6.继续回车,得到距离矩阵,如图6.6所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqIAAACICAIAAACzyx7dAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAABpzSURBVHhe7Z37kxzVdcf3V0va18zsY2Z2Hju7eoHE+1GVquQH/+AqpxKnXMEpx0BSVFK4CE5SqUoqNj+pyv9AQmlfaCUtFg8RIIAJIAeSlJO4MLaRdoVlEELIGIKMQELiYclYi3N7WrSubnff6ek+PTO78+m6pertuffccz7n6n7ndvd09ywdfGm4XBuu1obGx3O12tDEeG5ifHZhV7ZY6GGDAAQgAAEIQKDlBM6dO/fmm28eP3785MmT72vb6dOn1V/qX287c+bMBx98cOLEiVvvvOvnp5b//bXlZ71ydPm5o8s9i0rmS9WhcjWnSqWarVYy1ersrp3ZQr7lcdEhBCAAAQhAAAI9SWT+otIfXX7WlfmhYiVXqmbHytlyOVOuDJbKMzt3ZvOjkIYABCAAAQhAoPUEEsq8rvQ9i0sHc8VKVpWxcmasPDhWUmVmfmd2FJlvfWbpEQIQgAAEIJB0Na+fundkPlsoZ4vlQVXqGj9QKk3Pz2fznLRnqEEAAhCAAATaQCD2av57rzmX593iXqS/IPNqHZ8plQfL9VKpn7Tn2nwbMkuXEIAABCAAgfireV3mXaV3ZD5TrGt8pZypVgZrlYFaZWb3ztwYd9oz1CAAAQhAAAJtIJBkNW8ovSPzg+qSvLr5brySWV8d3FAd3DQ++51duUqxDZHRJQQgAAEIQKDrCSSUeV3pew44Ml/KVMtK4zObxjOXT2S3Tszet5CrlbqeMwAgAAEIQAACbSCQXOY9pa/LvFrK1yqZTbXMlonslZPZq9fPPrAwNInMtyG1dAkBCEAAAhCIL/NHlpXAu8W9Ec+V+dLgZDWzuZa9YiJ37frs9Rvm9t47vKEMaAhAAAIQgAAEWk9AROZdpXdkfkDdXa9k/vJa9qrJ7HUbcjdunH3o3uGNldYHRo8QgAAEIAABCCSSeW1Br5Tekfl+dzV/WS1Tl/nsjRvnlMxvQuYZaRCAAAQgAIE2EEgq85rS12W+VBqcKGc2j2eunMyok/Y3bGA134as0iUEIAABCECgTkBW5pf6i8WBWln9ji6zdSJz9WTmuvWzDy4McW2e0QYBCEAAAhBoB4F4Mn/s1PL31DreK/Ub8dRqfqm/UOyvlgbWVwY2jw9urQ1cUZu5fzd32rcjs/QJAQhAAAIQiLmaVzK/T5f5+qn7ngOLS335Qn9prK9a6l9f6d9Y6d9cndmzKzc+BmkIQAACEIAABFpPIPZqXsm8ofSOzPeO5HsLhb5Ssbcy1jde6psoTS/szJV5Cl7rM0uPEIAABCAAgUSreUPpHZlfNzTqKn1vsdCrxL5cnN45nytqz7TfJgRdyo6IO4HONOthxPoRq4XFZW+e0HgUmM12EaV+lDqGb/4mMYwIxptS71E8pA4EILCqCSRczesL+rrM50aU0q8bHl03ml+Xz68rFKbnd1zyhjp9OlP7/qLjtsx9HTUtGlG4IVhCC3Q+ekTRa3owAz30j+wYlgMjdbsL3GJ0EaWJVydwUPktRDkSmMdm43XrN9yi1LF0HRh1w06pAAEIdAGB5DLvKX3PfiXz2ZG1uZG1QyPrRupKP5qf2rHj4vvm7XNZ4KeCapFSOnWB8boIPKg7EF1m/G5HkQRj3o8SexSBtMtJRMeiOGNn1SwTw7HYI81taAkzjKGdm92mHVcU5s0Cpz4EILCKCIjIvKv0jsyvzQzXZX70gsznQ2Q+ush5E6tlAm1jPmJPstEJxIuuWcdcvMZm17PolfWaYXmMF2ZEgdQD8Tvgdm0c9/wx2kbssdlwAuHrLoUZbDbRzTpGfQhAYIUTkJJ5pfR1mc8OX1jKO2fs8+uK2kl7/3Spz6TNzlZG/UDx8E/fybPldRRFuvyVo7jttjLgBAYY6IwXdfRgve70HXtGGnoYW5bskRpwVC8WT3SGgftec39eLG2jjFW3juGbccT901/8GbT0GMWZ6COBmhCAwKojICvzi2op76zj8/nesYK6/07dbz+9az43VghdKukTX1MTlr+yLgCBYtCUfUumA43b6+ufhrkRzz2LtUAJ0Q8G+uyPLqyadzwwF2FA4oUZsS/deJR9b/gZXhltDWiBYI14PQteZbdCYPiBrob5H9ZRGHCOQwAC3U1AWubV6Xql8aViX3Wsr1bqmyw7P6iraD+os8yn+iRoTKz++TFQWiwzo2tQZPObCpz3/SFYJvowAbA7bIkoRrB6XA1x2ZXJn2ULouhJCQwqLOlRjrvYA8eS4ZVlaAXmzq3vbxU9BHuPnntetRgZj06emhCAwIolICvzS2opr9bxjsavL/dvqvRfVp3WH49jzFwNp7zAidJlHTg1W6Y8/2yuH/Hvh9V3jxu922fYKGEGRmQfVTE6DTPoj8iDHNaLkUojKdH52KPQHW7Kk+gjJ3DMBI4uzxn7pzo6b7ToO/4s2GHax0ZgW/vI4VMIQKCbCEjLvFrKl4t9E2X1/LuBreP9+sNuo0/oYZO7fUYzplQji34l0494+4EH3XlW1wMjlsDZvOHMHqOVRWn88UYZx34sgSIUSM/vjI4oLImx/QwLxxgVgdgtdQIHlf+gZ9YdDE1F4a9vgRPI0GLBPxSj5J06EIBA1xCQlvlCvrc61r+hMrBlfODK2sA1EzPuq2v0ydfTDP/B6BNoYM0wmXGnZv+EqNd39/VqUfbdgdLUPB5W327EIgyBg1UPJxC+0SowF35oXivdWz92P+pAJxuiaxZvoFdGLxbf/IF4bcMs+z20kNQ/CkxoFP/9iYtyJProCssUxyEAgZVJQFzmC+oZt87p+q3jA1dPDF4/ObN3YXhj/X3zlokmxkf+JhZNcnv3z+/6tO7u69Wi7HuzvH1y9waHV63h1Bw2niLO1144fjuBFsLMRjmuY/SA6P1GhBMYcsN49QrN7rsZtyPykwwMR0+xEXuUFAT2EmbTbt8fkeswGwQg0JUEpGW+6Mp8tf+KcbWUH7xh/exDC8Ob6jJv2SxzUOCcFTg72+eywE/1+dp1T68WZb/ZCdfrxd4wjFXEydqrFlg/+sFAzv4QXIO62Yh+2keFpfcwemE+WHxrSKPZ6GL40HBUWHhKoW6YCypAAAIrk4C0zKun2av77zaWA1bz3lymJiZjbmp2FvPXd236LbtSYRQjVUarMFO6fa+J37jliNdvs6rjRRFxkHn2A8FGP+j2G7gFpiCsvt8fCwG3u8BUNvQkLNHNAvfXN7JvSYQerH8weNEZFtxWYX6GZcGSIN1+dJiWuPgIAhBYmQTEZT6/rlJ0brO/vBp8bb7hTG1MTxEnstj0BWdA/1wcNjvrSuD33GLHMt17dsKkIrCC/WAgfL8gWfTJtR/oksVPOx+DWAwmbtK9YklBYB17jzHiCuNjd9LP1h+IVycKpbDmHIcABFYyAVmZX1yrno1TKvTWxvrU5fnLnVP3M/fvHposmXO9O/WHlUBtaFi/qTREmUCbNWhRi0BlskRklwoLN2M2txPWvWoKr7+XwAADdchrGxZjxBAC7YSlwM7Ta+VWMxwItBmIKzDesNQbnfr/tPhsJM7vIUcgAAEIfEZAWuaHR5xn3FaKvROlvg3lvs2VS343v1q5hwlDFMEIZNKwYUSSgXaiH4yoeZYQIgYSsVo8Vk0Zb6pycn9a0F3EoUI1CEBglRIQlvk16r01o6PqUfaO0o+PKbF3noJX1p6Ct0o5EhYEIAABCECgAwmIyvyBxTX1V9fUlT6/bqywrlyc2ll/pj0bBCAAAQhAAAItJyAt85mhNbnhtcOO0q/Nj64t5Kfmd2QL+ZbHRYcQgAAEIAABCPRIy/zgkFrQO6fuldKPjCqxn9pxTzaPzDPUIAABCEAAAm0gsAJlflujX0M1hVFZ0zfDuPFpU5bDKutdiBg0jMjab8gnDURpYMEmBCAAga4kIC3zGbWU907a5+VP2rsa5m3Gn82m0N88ocGGDuj20+hL1n5DPmmE0JAhFSAAAQhAIDIBaZlXt+DVL8w7t+CVUrgFzy9j8VaTrp2GMhaZY9SKsjJs7zWJBkfkk6SLqMioBwEIQAAC8QmIyvzionObfX5U3WPfm9IP6jxdCdOhplC0S+bdryZpa2Ry+w0tNKzQVDqoDAEIQAAC0gSkZV49Ba+oHmtf7J0sqSfbyz8eR5f55EoZJvPedwhp3BfVPVWBlPLf7mSqIaRBHpsQgAAEuo+ArMwvrc3n1W/lnUfgba70bxnvv6J28WG3InA9AVM7aci87mQaMqZ/TUnDvqz/Fg/Tdl5ktGAEAhCAQNcTEJZ5dUlePfxOPeZWafzAVbWBaydmHlwY2lAW42ysUxOKTetXq3qPCZ1vyDS5/TALyS03dJ4KEIAABCAgQUBa5tVVefXems0V5/V0104OXr9+Zu/C8MZG75uPHokhMAn1xt88bRleWfaR+egjk5oQgAAEOpKAqMwvLTk3302U+jdX1VJ+8LrJwRvXzz60MLxJTuYVRG9Bn0TjDSPqT2/TP0ojZyvCvoWPl4I04GATAhCAAARECaQg8zXnwnz9jP3k4A3Sq3nR4DEGAQhAAAIQWN0ERGV+cenCtfmNFfWm+YGrJ5TSC1+bX93ZIDoIQAACEICAKAFhmVePvVO/mO9bX+6/rNq/dVxdoRe+0140eIxBAAIQgAAEVjcBWZlfdJ5/py7P12+279tUUWI/vWdXbnxsdUMkOghAAAIQgEBnEpCWefWkW/XT+ZKj9OpePPWQnOmFnblKsTODxysIQAACEIDA6iYgLPPOe2vU+2eV0o85D7RfVylO75rPjRVWN0SigwAEIAABCHQmAVGZP7C4xnlDXf1l86Oj6jq9uiNvan5HtsD75jsz+3gFAQhAAAKrnIC0zA8OrckOr1EvsFFKr5b1o6NTO+7J5lOQ+W2pJUZZ1ktq/ayAV9cExt4aOOlhxzIEIACBbiKQjsy7C3pX5u9JQeZdpUljMyyn3VFKUSgynhjLUtKBpAdH1mesQQACEOhiAtIyn3FW887raOsary7ST+0QPWmf9lLSL2NpKHFrokhDhpH5Lp4sCB0CEFiJBKRl3tV49bM6dWFe3YVXKkztnM8VpW/BS0PA3Ox5ltNTYqML8VGTtn3P4fSyIM4EgxCAAAS6lYC0zNfvtFd33jmvo62OqdfYOD+oK0v/oC49gdE1Uld9qfGR9mo4bftovNRIwA4EIACBlhAQlfnFRXVJ3lnHu6+crz8hZ/o7KTweJ22ZT29BrJ8k8PYFM522fdfV9PgLosAUBCAAAQj09EjLvFrKq2fjqHfRqsfaX+4879Z52O1ESRh1ejJjSG96HbVALFNyPiWzwkMEcxCAAAQg4BCQlnl1Vb6snmlfUhrvvHL+momZBxaGNpSFYaenNIbl9DpaoTKvA0kVjvCIwRwEIACBLiUgK/NL6tb63mpRna533ltz9YR65fzM3oXhjXLvm/dW28ayWzB9RheClnVTei9pdJGS/RbwT4MGNiEAAQh0KwFpmVdvqKvWz9irF9FeMzF4/frZhxaGN8nJfLfmibghAAEIQAACMQhIy7yzmlcyX1/NOzIvvZqPESJNIAABCEAAAt1KQFbmF9fmR9Xrapz3zW+pDlxVG7h2cubBhWHxa/Pdmi3ihgAEIAABCDRFQFrm1S146k579Ws69bL5LePqLryZB3YPTUrfad9UiFSGAAQgAAEIdCsBaZlXv5sv1u/Cmyw5V+gvq07v2ZWrIfPdOr6IGwIQgAAE2kpAWOadd9OpBf1YQSm9+vV872TJeQpeRfopeG1FRucQgAAEIACBlUJAVObV++bVM+3rL5t3nndbKqjf0E/vms+NST/TfqXQxU8IQAACEIBAWwlIy3zab6hTsLal9pZVw7jXkWyGdP/VfsItzEJyy2GOpco/IQ2aQwACEIDApQSkZX5gaE1d6dfkhp0T+EMjU3P3ZEdGxbC7GuNu+r5UB4ZN8S5k7Ye5J+62hzdt/lJ5xA4EIAABCNQJCMv855TMqzJYF/vMsCrbZ+cywyNitNOWGVkZ9oft99/71tIUI9eOX87Djjdl3FI5bf5SfmIHAhCAAARSkfn+3OdUccW+XrbPzGWGpGXelUa/yIknVbwLz6CIHoe5J+62BxaZFx9jGIQABCCQJoEEq/nz+44s66Vn/4FFR+MvLdun5zI5OZn31D09JQuUNKkc6DKf/JtK62Xe4O9+32KDAAQgAIFOJbDSZN6/Gk6JbEpfI1yzRhSxQ2iLzLvepsQnNgoaQgACEIBAEIH4Mv+qWs1fsqBvyWpeV5f0lCZty8q+iFgi8/yvhgAEIAABK4HEMn9R6ZH5CGPNEOaE3yfaJfMJ3Y7AiSoQgAAEICBCIJHMX7qgb4nMq6BdjUlVaVpgPGEIOgTd27DjIoNFPwOhOmKDAAQgAIGOJxBb5p9RGu+Wz07dt0rmO54pDkIAAhCAAAQ6hEASmTeUHpnvkJziBgQgAAEIQOACgYQyf0HpnQX9eWSeUQUBCEAAAhDoLAIyMl8/dY/Md1Zq8QYCEIAABCCQXOa9U/fIPMMJAhCAAAQg0FkERGTeVXpkvrNSizcQgAAEIAABYZlfOzhslKmZuazgM+3JGAQgAAEIQAACkQlIybxa0PccWFzqyxWNMj03nxspRPbHV3Fb0BF10C3Jt7TtGx56nguGYO8iISILZKkUJPSQ5hCAAAQgEE5AUuYXl17KFWtGmZvfPVIoxUyBX0j0I8llJm37/rCT+2xHadhP2J2leXpfU2KOFZpBAAIQgEAAAUmZP/jTQ+UNVxpl58J9xXKtafaeiqS0mgyzL/s1or0yn0SJ7fyjZKfplNMAAhCAAATkCUjK/KGXD2+58fNG2bP3kfENl8V03L4YTbhUVT6lbb+NMi+ixIF8vIPJ+cccFjSDAAQgAIGoBCRl/pUjr//eH95slIefeGbTlddHdceoFyYkSdapehcWoUpJw3T1Vfvim67BDb/HNOzdD0E/khKihl5RAQIQgAAEIhOQlPmjb7z1la9/yyhPPfe/1/zO5yP7c2lFu5Aklxn714iYTkdultx/f1f614j0ZD7tLyuREVIRAhCAAATsBCRl/hdvv/vX354zyn+9cPB3v/BHMdPQFplPQ30D40+jI0+A3R4TdpE2/5jDgmYQgAAEIBCVgKTMv/3u6W/PP22UF1469oUv3xLVHaOeX2b0Iwk1LFAFZe37w26lfWQ+5rCjGQQgAIHVQ0BS5k+c/njquweMsnj0nS997famgXmrUmN56klXQo0Ps2/pt+kYQhroXUjZ1O0YIcTroiGHtKOI5zatIAABCEDgUgKSMn/yw1/f9z+/MMrLb5256ba/BTsEIAABCEAAAq0nICnz7398/l/3v2+UI++c/ertf9/6wOgRAhCAAAQgAAFJmT99dvnJQ2eNcvS939x8xzcBDQEIQAACEIBA6wlIyvyZs58+c/g3Rjl26vwtd36r9YHRIwQgAAEIQAACojJ/7rf7jiwb5dip5Vu/cRegIQABCEAAAhBoPQFkvvXM6RECEIAABCDQIgLIfItA0w0EIAABCECg9QQ6Xua3hTAJO94sQr8ddUQvzRpsWF/WuIWD25H4ljYfcYcxCAEIQKCLCXS2zIcJlZSA+e0YR6Q68kaYbjC5cYsFT4xlB3fafGS9xRoEIACBrifQqTIftuQNO95sIu32XWspKWWg5Ev5b3iuQpDd/F9TxLuQdRhrEIAABLqbQKfKvC5X/gzpYpMkf3473hGp7xMW95JHEWjBCCEJHwv5FvCR9RxrEIAABLqSADJ/adp1jVSfJFfiwFHlaWTCMWf5mpKS863hkxALzSEAAQhA4DMCyHyQzKe6IPY6TP4dIkzm9aW22hfcdMspfZMQ9BZTEIAABLqeADIfIvPu4eRKbBlhyY3bLSS373fek/kW8On6/5wAgAAEIJCcADIfJPPeMXGl1A0mN94umU+PT/IRjQUIQAACENAIdKrMe6vGwOWj/mm8dIbZV9aMj+LZt7RK7rzfSWXT2ER6CYwibT7iwDEIAQhAoIsJdKrMd3FKCB0CEIAABCAgRQCZlyKJHQhAAAIQgEDHEUDmOy4lOAQBCEAAAhCQIoDMS5HEDgQgAAEIQKDjCCDzHZcSHIIABCAAAQhIEUDmpUhiBwIQgAAEINBxBJD5jksJDkEAAhCAAASkCCDzUiSxAwEIQAACEOg4Ash8x6UEhyAAAQhAAAJSBJB5KZLYgQAEIAABCHQcgdgyv+/V86o8o5WeM+d+u+/IslGOnVq+9Rt3dVzcOAQBCEAAAhDoAgLIfBckmRAhAAEIQKBbCSSUeX1BX1/Nv7psFFbz3Tq0iBsCEIAABNpPILnMe0qvZP5T/SS+s3/4vJL5W+7kpH37M40HEIAABCDQhQQkZf702U+ffuUTo7x+8vzNf/XNLiRLyBCAAAQgAIG2ExCReXdB36Nk/t9+du5iOXT2yUNnj773yc13/GPb48QBCEAAAhCAQBcSkJJ5pfQ97/9q+YmDH2nlw8eXPjhy4tyffv0fupAsIUMAAhCAAATaTiC+zB9xflCnl55TH59/9MVTTtnvlEdePPnwj987fPzjP/nLv2t7nDgAAQhAAAIQ6EICiWT+UqXvOfnRJ3t/eHzvD395oTz/9oM/eOvlt87cdNvfdCFZQoYABCAAAQi0nYCkzL/3wa/3fP/ne/77DVXuV/9+/9i9//naoTdOffnWO9oeJw5AAAIQgAAEupCApMy/e+bsrmcP737uVVUW/uPI7mcPz+87dPD1E1/62u1dSJaQIQABCEAAAm0nkFTm1Xn7z07d95w4/au5p1665+mf7njm0Py+n+14+qXZJw8sHjn+B1/9i7bHiQMQgAAEIACBLiQgKfPvvP/x1OP7p797YPbJxbmnDiqN3/7Yjw68+n+//5XbupAsIUMAAhCAAATaTkBG5usL+p53Tn1096M/2v7YT6aeeHHmyQPTj//k7kee3//KW1+86c/bHicOQAACEIAABLqQgJjMHznf88tTH/7Tw8/f/egL2x/78fQTL6ql/D//yw9efOXNL/7xn3UhWUKGAAQgAAEItJ1AAplXr5ytX5j/rPw/Du23KQGcCzQAAAAASUVORK5CYII=" alt="" />

图6.6 距离矩阵表

7.回车,得到偏心度表,如图6.7所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAApsAAABtCAIAAABhpD0eAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAqzSURBVHhe7d1Bbtw4GgZQX9QnmJzAK9+qc5Z4kUUWAQIkk2SVhQ2M0syo2SRFsUpSiSW9ghBUqSjx5yPdX1Nwdx7ev7x9/Pb2+O7pwYsAAQIECBC4ucCvX78+ffr0+fPnr1+//jd6ff/+ffg0/Dm+fvz48fPnzy9fvjz+52nI7iHB4+NBot987nRIgAABAgT+EZDoVgMBAgQIEDiCgEQ/wiwaAwECBAgQkOjWAAECBAgQOIKARD/CLBoDAQIECBCQ6NYAAQIECBA4gsD2if68PVNjF3mz+oXJt429XDfclpu3tLmu9+SqS6FW6dRNCBAgQGCZQK+JPoRK8SiOtjHqLg2qS9uPtTXWM5ujlzYI7afoGj3HZvFwwsn4NdvLsnXpagIECBC4VGDjRG8J5nrStKTj1W3qF4ZvK9FVwZ4taTYRiyF66fSG9rPFxMMcuxgrvK5TVxEgQIDAbQW2TPQ8k+rpkgdPSxRVQjcPpySlkliN6ceup2qYra3eIP526n2yFIo+8RCmls5sqcV5abnqtotVbwQIECBQEdgs0fNELAZ8MUSnQvrqxErCKXwsnhy76CfR48we34c64yFUArglm/M2LVf52SJAgACBbgQ2S/QkqlvioZ5PSxLr0kQPwTmmZjFTp+ppGWkI49kjMRw/xrXlJ/O11VJSUkyo0IsAAQIE7kdg40TPo7FCE0dIHlpJwNTjMOmleG2lTVL2RdNZDML8ZHGwlRyt49QDuPhvAPXhhxvmx9T5qem4iE5jAgQIEFggsFmix6EY1zd1PsmklkSfGnY9PuOOKjHZkoLJuMLHvPfi+WLXjZcXa5vqdwo20cvrmaqwyF7pfcHqdCkBAgQItAtskOiVzB7rCm2SGKjkax51jQE2punYY9JvMR3j7pIL448x89R94iEX24e+pm471j/bVztIsWWOX5yOqZVV6b19MWpJgAABAgsENkj0OMOm4rBYcTFCZhM3v1WeLsmZekdJiIYhhNwd/4zf5O1bYu/SCCw6FAdyBUgYTnwkAyxWO9X7VONLhzzF6DwBAgQIlAQ2TvQi+tQ/2YsJUUyyPIHyQIq7Tnqczacxz0LL/M9K4FVyKx9gUvb4seJ2UY6G++QlXXpmVmxWOAzNiwABAgQ2E+g70afS61KO2bzJYy9J8WL0jmXU6xy/LTZrCddiR0nNlbxsidJ6GbNFzja4dMq0J0CAAIELBXpN9DCMOFaTgeUxWYnV5YmeF1PM6SRl41HE9VfqmQ3mqWHOXlhZGbN5PAtY7D0ptVLhhatWcwIECBDIBfpI9GJyVxI6Cc5iuOZxMpwZj1yiGFpxYUmRU/k0m45J8aGSSmFjg7HmeLz1QeXXFn8IZmuuz0VxRPkcTYn5uSRAgACBNQQ2TvQ4b64I1HiElVCJEy6PvTxv8lsVIy25bfhY7CuZiXzUUwMJN0zqac/X2aAN/eY3rNRTbF+5Q8KSUPhIgAABArcS2DjRi8OoB0wlgS4Kj9lextqKLethmcTwFbMV7jBVZPxt+0CmyrjoDrMaeS8X3f8KK5cQIECAQIPAlone0L0mBAgQIECAwCoCEn0VRjchQIAAAQI7C0j0nSdA9wQIECBAYBUBib4Ko5sQIECAAIGdBXpK9OfMYjgzHjtD6Z4AAQIECHQt0E2ih+SOX/GZ/NuuVRVHgAABAgRuLdBBordsxCX6rReG/ggQIEDgzgQ6SPQgVs9siX5n60q5BAgQIHBrge4TfdzB31pGfwQIECBA4J4Euk/0lh38PYGrlQABAgQIbCIg0TdhdVMCBAgQIHBjgY4TPTxvt0e/8YrQHQECBAjcp0AHiR6SOz5GyuLJ+4RWNQECBAgQ2FSgg0TfdHxuToAAAQIEziGwINFf37+8jcfD8O7jt7fHd0/ncDNKAgQIECDQl8CyRP8n1CV6X/OqGgIECBA4m8D1if5hiPNw/N6pS/SzrRzjJUCAAIG+BBYl+p9Ql+h9zalqCBAgQOCMAlcn+l9DnEfbdHv0M64eYyZAgACBfgSWJHoc6hK9nzlVCQECBAicUWCFRP97pz4k+uvS33V//vcEDB+T44wTZMwECBAgQKBJYGGi/9mmf1ie6CG841d+pmlEGhEgQIAAgTMKLE/0EOoL9ujxRlyin3ERGjMBAgQIrCCwSqIPof4wpPqip+726CvMplsQIECAwHkFuk/0cQd/3jkycgIECBAgMC/QcaJ7Aj8/fVoQIECAAIE/AhLdUiBAgAABAkcQ6DjRw/P28IrfH4HdGAgQIECAwMoCqyX68NtxV/5mXEjr+BjHWDy5soDbESBAgACBIwh0kOhHYDQGAgQIECCws4BE33kCdE+AAAECBFYRkOirMLoJAQIECBDYWUCi7zwBuidAgAABAqsISPRVGN2EAAECBAjsLCDRd54A3RMgQIAAgVUEJPoqjG5CgAABAgR2Fug70Z+j/059ZyjdEyBAgACBrgVWS/Slf/darhTiPLzi9117Ko4AAQIECOwjINH3cdcrAQIECBBYV6D7RA/bdHv0dafd3QgQIEDgcAIdJ/oY5OL8cMvOgAgQIEBgdYGOE30M8vAmbNa9CBAgQIAAgZLAPST6uFk3hQQIECBAgMCEgES3NAgQIECAwBEEOk70cWvukfsRVpoxECBAgMC2An0n+rZjd3cCBAgQIHAcAYl+nLk0EgIECBA4s8B6if7y+vHb2+O7pzNrGjsBAgQIENhLQKLvJa9fAgQIECCwpoBEX1PTvQgQIECAwF4CEn0vef0SIECAAIE1BST6mpruRYAAAQIE9hLoKdGfpxGGryrf7oWnXwIECBAg0I1AN4leyezwlUTvZtEohAABAgQ6FOgg0cfALmZ2/dsORZVEgAABAgT2EOgg0cOwi7vw8aQ9+h6LQ58ECBAgcEcCHSd6nOIS/Y7WlFIJECBAYA+B7hM9fuo+vPciQIAAAQIESgIdJ3pcrj265UuAAAECBKoC6yX6h2X/X/d6Zkt065gAAQIECPSe6Mlz9fzRetzAdBIgQIAAAQJdP3U3PQQIECBAgMACgfWeuvvbVBdMg0sJECBAgMBCAYm+ENDlBAgQIECgC4GrE/39h9e/ouPhvT16FxOqCAIECBA4qcCSRI9DXaKfdAEZNgECBAh0IiDRO5kIZRAgQIAAgUUCCxN93Kbboy+aBhcTIECAAIGFAssTPYT6Gon+/O+xDB/zY+FwXU6AAAECBA4q0E2ih/COX8mZvMFBp8SwCBAgQIDAFQKrJPqwTV+wR4834hL9ijl0CQECBAgQeHjoINHDNMxuwWcbmE4CBAgQIHBigTtJdHF+4jVq6AQIECDQInB9or+8Dg/bx2PBU/fZPbo4b5lJbQgQIEDg3ALdJ7o4P/cCNXoCBAgQaBRYlOjRNn2zPbpEb5xJzQgQIEDg3AIdJHrI7PiIp0Sin3uBGj0BAgQINAosTfRhm/73Tn3xHr2xXs0IECBAgACBkoBEty4IECBAgMARBFZM9LeP394e3z0dQcUYCBAgQIDAvQmsk+gvv5+6S/R7m3z1EiBAgMCBBCT6gSbTUAgQIEDgxAIS/cSTb+gECBAgcCCBBYn+9vu33P9/eOp+oEVhKAQIECBwhwIS/Q4nTckECBAgQCATWJbowzb9z07dHt3iIkCAAAECewqskei/Q/1/V7/8OqhctMUAAAAASUVORK5CYII=" alt="" />

图6.7 各顶点偏心度

8.最后程序输出医院选址结果,如图6.8所示。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqAAAAB3CAIAAABT+mUsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAABRASURBVHhe7Z09r13FFUDfv0iRIhUSkRIJJS1/goIOi44iuKWwK34AZaooUqJILpAo0mEpBRUpIrp0diREiAQxwV8Q5MKPZJ7HHs/dM3vPnvN9zl1XF+u9c/fM7L1mzqxz7nvcd3H7ztPbd9Pz8vP7l9eu37zgAQEIQAACEIDA4gSePHny5ZdffvXVV99+++2D7PHw4cPwXfg3PR49evT48eN79+5de/dmcPfHd56GZ+b0ywsEv/j0MSAEIAABCECgTmACwb+4b38m+Owmnjt4Fh0EIAABCEBgLQIjBf/8Jv6Z1i/yb8L3CH6tSWVcCEAAAhCAwHjBpzfqETzLCQIQgAAEILAVApMIPjr+SvAvb+LvcAe/lTkmDwhAAAIQOEMCCP4MJ52SIQABCEDg+ASmEny4dX9+B5/u4/kZ/PGXDxVCAAIQgMBWCSD4rc4MeUEAAhCAAARGEEDwI+DRFAIQgAAEILBVAnMJPrxRz1v0W5108oIABCAAgeMTQPDHn2MqhAAEIACBMyQwpeDD/yoXf8MuPrmDP8P1RMkQgAAEILARAgh+IxNBGhCAAAQgAIEpCUws+PwmXt7Bv3+at/h2yqIuLjydhxjt2UzG2b/ox26lvTpsrLKEJfk3ARIAAQhAAAIzE1hP8KEwj7r8YV02Nbr1ZDUsZj7BeyiVozfzGXwBNPOqpXsIQAACEGgSmF7w8W/KVX4GH3WiOaMpG7sUo9v8pbyTYZnEHpqCrwYMq7E5lielvBOntrVxnfk0lx4BEIAABCAwJ4GlBJ+sMFgbfjsKmWn4BmfSFHxp0ORg7WrD6FO7VtA8nY7nhTeZlKOM4TPnkqVvCEAAAhDwEDhvwWuObJLzX20kc4sm+RWPSCM2qT5TYnYCIv98LO1KYo+CN66WmjNIAAQgAIGjE5hL8OFd+pe/ZBc34vjQ1KUZy2kyo9v00si5zDPRvk415mPFYFHISKF2NRci1FgJPr0zNRJvb/NyUfX2QDwEIACBQxNYQ/BdQKuCt/XWtK/naiD3R6lt29blq00fl8MlSgMIVAmnfqoddk3KFoIR/BZmgRwgAIENE5hf8FEnvXZpxhuKtQXftLU2W83rBk3J1VqqFwFOl+c87euA6qu24KM4nc+NrOxc9htJiTQgAAEIrE1gfsELoRrmyFmMFHw+ShWxSCMq02hV+lh0K/Sv9WbIPr6U/yvQlXxsDaf4MvlqwxKUaLj2Yq2PH2vhAQEIQAACpwRWEnxpMs2gxt4tnNo1tWVbuzctvVK6qbSqX1M/WgJlQJVAeVADJVwe04vB5b/VcjxgU5+e4Alj1hp3whLoCgIQgMA8BJYVvOEVza+at4RHU8/CZ5oAqtqLiMsRPUfyhiK+WkI6WH4h0rCbp2XhBBXzNCYi77AKU8vHSGCetfuykJn6p1sIQAACeyYwqeDvXn3ETXqefFStMErVHFVXGXLNX9I0WRW2OCjaduk5n/umqqvBTUOPF3w5rs3fXtDLi7yaTywhPvKv93w2kjsEIACBCQmsJPik2FKKTb+WgjGaaDaKx3PPJVV46NqSa5aQys/HslMVWTUhlFWkYgX8hMJTeDXzRNLZwyRh+dzFr3lAAAIQgEBGYGrBZzfx1h28cIymDacIq7bTNv1cDBFEau5Xna0Tj3uqOVeXpjNSSyklkxebV+qvWuDKs9Voc7JBAAIQgMBKBGYQ/AvHS8FXPSoOaoYTyhRqMUxTFY9wYWk4w98eHVb7L/0qitVEbhwXWMpvhZKrU2Bou+RskFlpBTMsBCAAAQhUCcwj+OD4u9kn2YWRczFUjTXSHMlt1So9r5a61VIan6qWZHlcs/vI5Sy6jXyaD09MsxMCIAABCEBgEQJLCX6SYvyC8UemxOZr0tuzM37M9YdziElmjU4gAAEIQGANAosIPt4gNp+5a1OwgOI3kxE5Ro15PpMkU866s9uRVThHWWNRMiYEIAABCIwnsJTgc3k3s07uiV8YVwbVawJnvN1z7KSM0VrZRfltOj7S2YMzrDlZBEAAAhCAwCYJbFjwQvMlvlxRvboq4z09iJhmhp4pNy5HypfyDrWEq8c9o3iyJQYCEIAABHZCYFnBG5op1RVF5dSYR8/GlHiuFVI+zSo8NtU03Fw3VetrI6beRvJpZkUABCAAAQhsjMCCgheOMZQTdSWULxwmODY7tw3nF7zIKn47lT6bVVRHt1FoGU6V88YWNOlAAAIQgEAksKDgPR7KbdRloBhseDq9FL6Iz/Sofm24NvWQf+FfUFpd5XGDgCghH73aqqvzSNIYwl8skRCAAAQgsBKBSQUfP4j+2f8Ef/L/wUe7VL1YdWSykWE4watsYhg6JhMfZVbpeBqimmTeSXXytOSrx+MQWlFl/yml6kuegzZbo/9qsasc1OZllWQYFAIQgMDGCCwo+C575ZYtHVzqJ+kq91b1YN6zlpLt5mo+1Xl1OjuGpX+1etMQIj61bZZmkNRK3th6fZlOrCWVvLv8NwuWxCAAgaMQmFTw6YPoq3fwObJcUSXKfOMWVhMyK1/NA6r9aBbMDaHZQhxvSqUMMI54gvPkBUOj2Cq0ZvIbX+Ih/72XsHHCpAcBCOycwNSCzxz/8rPoDS9W9+i0d1elqzWpyt5zQSBi/A72CMZz3eC55iir06g2+WjD5Us5ToGnwLVOgI2ntxYWxoUABCDwgsAMgi//2IwtOU2ogwVmXE8ITcZIj4OTTpL5yi+qq8rTeZfgS9OLcc9Q8MieHQ0CEIBAQWBBwRu7cFPJVU2mg1WladZMxzW7a72Vx41xSw03g3v79+cpLmJsMjs6SfJrrB2lTaoQgAAEFiEwj+CbP4O3a7NVV3q9S3Wa3qrXEMLT4hql6eyuKZxP8NU8p02+q1KCIQABCEBgfgJLCT6/2TK+rtq3ar7k2tz3zVGqQIW2yxxEAnb+zRzygDwfT0MRL8qJeWoXCr39z7/4GAECEIAABOYjsIjge9PPFVXqqrc3I76qdiH4WROwhW1XWk1Ms/uE0OgKAhCAAAT2QGCw4MNH2nx8+rxIH3EjP+hmDyDIEQIQgAAEIHAkAmMELxyP4I+0MKgFAhCAAAT2TQDB73v+yB4CEIAABCBQJTBS8PlNPHfwrDEIQAACEIDAVgiMF3xyPILfyqSSBwQgAAEIQADBswYgAAEIQAACByQwieDjTTx38AdcH5QEAQhAAAI7JYDgdzpxpA0BCEAAAhCwCEwl+HATzx08Sw0CEIAABCCwFQLDBZ/+MOydp8HuCH4rM0oeEIAABCAAgUAAwbMMIAABCEAAAgckMErwpzfx4S36y/zTaj+/f3nt+s0DMqMkCEAAAhCAwOYJTC74l45H8JuffRKEAAQgAIHDEhgr+Gd/+T39DD7YPT6vjiL4w64aCoMABCAAgc0TQPCbnyIShAAEIAABCPQTmEnwV/fx3MH3TwctIAABCEAAAtMQmEbwz96Sj79k9/KJ4KeZInqBAAQgAAEI9BNA8P3MaAEBCEAAAhDYPAEEv/kpIkEIQAACEIBAP4ERgj/5n955i76fPS0gAAEIQAACsxGYX/DvX1yI52zF0PEVgUS7iWPwvMSG6dHbjxYvum3mf4yAtapea1xj1rSUjPXmXwP5is1Pk3w1it42iMhfL5EQGPVRtSf/07t5B5+fJ2dyzojdZOGl5oFc3TQ9edoNm0OPbO7JcIMxxnpoEhtTzlrjDsg5ibZq2VTIsM2khNxc/1o+A0qjCQRWIjDuDv7E8fpv0Q87J1ciMsGws27Znvw8CZSTYsggDWpvlJ49sTmuJ3kPhO3ErFXRWuMG8p6VkE9QiheLsDzeu5nYPWsLW2u1nUVFJhBwEJhI8Fc/j+8UfL4FiJ3If7bHCqeKr/LqzTNPRtuMNMlVj5fbtKdesVGWpaVu/XtZmUmCX85CdU6N+DzD6kCO1dwIqVaq5dm7ruy5NoZ2zq9YV00a2jrU6uqNtxPIzxpnqvnaiE3EEjXWsH8ILbI6fc51WJ3cZkoEQGB+AgsKvjznxQkcvhUnefWsmynGYN2VZ7lPid2quZFNy6G5o5XDNZvkATkcbWq03dPDaqpzQFtLeQ5zrDetxlRXPuiAte1Zt9UYbVyxHgxuk0xNL3ONm52MKFYEe3LwnBT2KJPgohMI9BCYTvCXvjv40g3ODUU7eeLx/NncAnrPw9R5vv/2jmtslEb/sZaybVmv0X91QYgePEyqMXY/eWl5Lakro8+eddyONeYrEY5LsczTw7Y5v1qKgoDWjycHMYQ9p9q4EYKYIDHLbdzuiHJe8gTEq2J23IOcnEE2JS0fYyybsz9JIiEwNYENCN443zybWvPs0gKaDe3dxGhefcmopSveU46ntLSRxTI9Taphdj/i1dRDOK6N68yk90ywu9XyLEcZwN8zdHWxaWvGiWjYuHFqUlvnWAJUydMzXx62/rWaj+jsuVqFJ/NhWTl7JgwCQwnsU/Ceja83xiBY3R20/rXN0ROvbUm9tXg2ZRHjaRLTsxtWU/XX7k+jd8V7chjDubf/lL/B05OPZ902F7BYtJ41bPOPI4Zn10Nr4uegjevpuUzVU4Ix7121EwyBGQjML/h0yomzXTueNpfy7Ortqje+yndAnnkJeZ/57pOqs5OMzQWKZl1lk2ZpYnbspWbkk/qpxuTl5DSqZU6+3KvcnHlW51FAq86vKFnrJ0+jmafI2QBVQk5rQ4wygMO0E9Rc1ZF2HlZy0BaV3Xm1EK1JGeyPnJYYvUGgRWB+wbcy4HUIQAACEIAABCYngOAnR0qHEIAABCAAgfUJIPj154AMIAABCEAAApMTQPCTI6VDCEAAAhCAwPoEEPz6c0AGEIAABCAAgckJIPjJkdIhBCAAAQhAYH0CCH79OSADCEAAAhCAwOQE5hf8+2f29+BTvZPP1U47jEB4QAACEIDAsgTmF3yoJ9/iz2G7X6DGrSnTyGcBGsueM4wGAQhAYBcEEPwM0zS30ubuvxfJ1vLpzZ94CEAAAkcksJ7goxXinZ8wRHpJ3Bf2HtcmrNpPfrA6buzNI7M8pvy67EGLr+Yv8sxT1fh0cUg1GpOiDeqZR42zAaG3Lq1ejkMAAhA4JwILCj5t04lv2tPzl2w7lpbtsqOYWs9YSXjl0LY4jYZVEQ7oP0+gl4Ondk+MKLNk4izWM5bo6pxOVGqFAAQg0EtgQcFrW3/YtXNJJNmnL1JDbX/v3ffFEKVZnU6yBV/tJB+6WpenlmqMJkg7SdvHHunmc1cdywnTHqvKrXexEw8BCEDgnAhsQPACd9NwIzXvkZbTSU13OqXrDKteEEx7lSBs7WG1jODP6ZykVghAAAKTENi24D2CGWNHT/8Rc4xsXnzkweJrO89h/fvzLxeLp60nJhd8lY846OnTEyPmZZKzgU4gAAEIHIjA/ILX1GUorbdJlx1zW2ty0kTuEby4DihdZXTi6d8Q22AOoWH+qPajSdeZT2pu9JOjc3ITtA90ZlIKBCAAgZEE5hf8yAS309xv32E5z93/sKxoBQEIQAAC+ySA4Fvz1ntb3OpPvj53/735EA8BCEAAAocggOAPMY0UAQEIQAACEDglMEDwb7178/P7l7fvXN6+e/K8EN+HoGvXbwIcAhCAAAQgAIHlCSD45ZkzIgQgAAEIQGB2Agh+dsQMAAEIQAACEFieAIJfnjkjQgACEIAABGYngOBnR8wAEIAABCAAgeUJDBL8jfD7cx/zS3bLzxYjQgACEIAABJwEhOAfP37839rju+++e/ToUXj13r17b/0mCv4pv0XvhEwYBCAAAQhAYGkCQvBB7q+99torzx6vvvrq66+//s4773zwwQfh+KngnyL4paeK8SAAAQhAAAJ+AtU7+DfffPPtt9++cePGrVu3Pvnkk2D34g4ewfsZEwkBCEAAAhBYnED5M/j4Lv1777334YcffvbZZ9HuDx8+5C36xSeHASEAAQhAAAJDCUTBf/311/fv3w8Wj49g9OD1jz76KNn9RPDv8kt2Q3HTDgIQgAAEILAMgSj4b7755sGDB+EePT2+//77H374IfybjoQ7+yD+q1+y46Nql5kbRoEABCAAAQgMJhAFH27f4zvwxiPYHcEP5kxDCEAAAhCAwKIEouDDO/BC7cHl8ZZdPMId/LV4B3/6l2bCt/yxmUVnjsEgAAEIQAACBoEo+NLl4c35oPbwr3ggeJYTBCAAAQhAYAcEouBLkWtHrgR/nTv4HcwsKUIAAhCAwFkTiIIP2vY/vIK/858ff/unP4donhCAAAQgAAEIbJ9AsHZwd/tn8H/7148hLvy4nicEIAABCEAAAtsnEKwd3N0WfBkx85Hw4fi+Z/gY/atP0lee8VXlGT6hN3+ehD3vsPL7hzMXzoiRwOmEns6gmLjNfputzPOZ1uen22YnxU5M3S6c29FJ2OEnvblFH57ALgv8yz+K36Jf3GrNpfMiYF7Byz/CsziHXS6giSjh+J3O/kEdb9xI1PW/0+nzp93cpdOVur9PImcnsAXBF/dwxhX0dI6/+qs76clNfPF/T05kbv8KVh2/oxvEs72P39Ecqe/kiTf/uu/j/Ut9j5FNwaeAPVZ32Jw//WL9O/ja+7QzOL66B+H4xUVunEvZJrLfN+qf3/wddssoFsyzWTv9EdiOfM8b9T07QFPz57Ps91HpFw8uL/7+78pP5ntmfcJSmwvoxW13/0/iEfxKc+pfHsXsZ5rfizPO9iZ+v44/eTNv7H384X/S19yi/ec7kfMSCGb//R9vXYT/guf/+s95B/PZpbl6sp/H9zte24OeX8Wf12/NbGG6yxx4o36b89LMih/Gn8l71M0turlUCJidwKf/vAxOD2b/yU9/dvHKL37981/+6nd/uPXoyf/Wfv746MlGnqujONsENrIApkrjTOZxKlzH6OfYk+6Zo2MT2Hp1webB6cHsb7zxxv8BYJ8myHnCqh8AAAAASUVORK5CYII=" alt="" />

图6.8 最终结果

05-06 15:39