题目大意:
有$N$项活动$M$个人,每个活动$act_i$有一个正的权值$a_i$,每个人$stu_i$有一个负的权值$b_i$。
每项活动能够被完成当且仅当该项活动所需的所有人到场。
如何选择活动使最终权值总和最大?
即对于给定的有向无环图,求出最大权闭合子图的权值。

结论:
最大权闭合子图的权值等于所有正权点之和减去最小割。

思路:
引理:
1.最小割一定是简单割;
2.简单割一定和一个闭合子图对应。
即最小割一定对应一个闭合子图,且就是最大权闭合子图。
证明(摘自HihoCoder):
首先有割的容量C(S,T)=T中所有正权点的权值之和+S中所有负权点的权值绝对值之和。
闭合子图的权值W=S中所有正权点的权值之和-S中所有负权点的权值绝对值之和。
则有C(S,T)+W=T中所有正权点的权值之和+S中所有正权点的权值之和=所有正权点的权值之和。
所以W=所有正权点的权值之和-C(S,T)。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int inf=0x7fffffff;
int s,t;
const int E=,V=;
struct Edge {
int from,to,remain;
};
Edge e[E];
std::vector<int> g[V];
int sz=;
inline void add_edge(const int u,const int v,const int w) {
e[sz]=(Edge){u,v,w};
g[u].push_back(sz);
sz++;
}
int p[V],a[V];
inline int Augment() {
memset(a,,sizeof a);
a[s]=inf;
std::queue<int> q;
q.push(s);
while(!q.empty()&&!a[t]) {
int x=q.front();
q.pop();
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if(!a[y.to]&&y.remain) {
p[y.to]=g[x][i];
a[y.to]=std::min(a[x],y.remain);
q.push(y.to);
}
}
}
return a[t];
}
inline int EdmondsKarp() {
int maxflow=;
while(int flow=Augment()) {
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain-=flow;
e[p[i]^].remain+=flow;
}
maxflow+=flow;
}
return maxflow;
}
int main() {
int n=getint(),m=getint();
s=,t=n+m+;
for(int i=;i<=m;i++) {
add_edge(n+i,t,getint());
add_edge(t,n+i,);
}
int sum=;
for(int i=;i<=n;i++) {
int a=getint();
sum+=a;
add_edge(s,i,a);
add_edge(i,s,);
for(int k=getint();k;k--) {
int v=getint();
add_edge(i,n+v,inf);
add_edge(n+v,i,);
}
}
printf("%d\n",sum-EdmondsKarp());
return ;
}
04-30 07:16