传送门

80分

$ Floyd $ 树的直径可以通过枚举求出。直径的两个端点$ maxi,maxj $ ,由此可知对于一个点 $ k $ ,如果满足 $ d[maxi][k]+d[k][maxj]==d[maxi][maxj] $ 那么 $ k $ 点一定在直径上。分别枚举位于直径上的起点 $ s $ 与终点 $ t $ 。 $ ecg $ 定义为 $ max{d(v,F)} $ 那么枚举出的线段的 $ ecg $ 一定为:

$ max{min{d[maxi][s],d[maxi][t]},min{d[maxj][s],d[maxj][t]}} $

因为 $ maxi $ 与 $ maxj $ 到线段的距离的最大值 一定是最大的否则 $ maxi-maxj $ 就不是直径。

比较得最小 $ ecg $ 即可。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <cmath>
using namespace std ;
#define re register
const int maxn = 1005 ; inline int read () {
int f = 1 , x = 0 ;
char ch = getchar () ;
while(ch > '9' || ch < '0') {if(ch == '-') f = -1 ; ch = getchar () ;}
while(ch >= '0' && ch <= '9') {x = (x << 1) + (x << 3) + ch - '0' ; ch = getchar () ;}
return x * f ;
} int n , s , x , y , z ;
int dis[305][305] , ans = 1e9 ; int main () {
n = read () ; s = read () ;
for(re int i = 1 ; i <= n ; ++ i)
for(re int j = 1 ; j <= n ; ++ j)
if(i != j) dis[i][j] = dis[j][i] = 1e9 ;
for(re int i = 1 ; i < n ; ++ i) {
x = read () ; y = read () ; z = read () ;
dis[x][y] = dis[y][x] = z ;
}
for(re int k = 1 ; k <= n ; ++ k)
for(re int i = 1 ; i <= n ; ++ i)
for(re int j = 1 ; j <= n ; ++ j) {
if(dis[i][j] > dis[i][k] + dis[k][j])
dis[i][j] = dis[i][k] + dis[k][j] ;
}
int maxx = 0 , maxi , maxj ;
for(re int i = 1 ; i <= n ; ++ i)
for(re int j = 1 ; j <= n ; ++ j)
if(dis[i][j] < 1e9 && dis[i][j] > maxx) {
maxx = dis[i][j] ;
maxi = i ;
maxj = j ;
}
for(re int i = 1 ; i <= n ; ++ i)
if(dis[maxi][i] + dis[maxj][i] == dis[maxi][maxj]) {
for(re int j = 1 ; j <= n ; ++ j)
if(dis[maxi][j] + dis[maxj][j] == dis[maxi][maxj]) {
if(dis[i][j] > s) continue ;
int ecg ;
ecg = max(min(dis[i][maxi] , dis[j][maxi]) , min(dis[maxj][i] , dis[maxj][j])) ;
ans = min(ans , ecg) ;
}
}
printf("%d\n" , ans) ;
return 0 ;
}
04-30 03:02