Description
XWW是个影响力很大的人,他有很多的追随者。这些追随者都想要加入XWW教成为XWW的教徒。但是这并不容易,需要通过XWW的考核。
XWW给你出了这么一个难题:XWW给你一个N × N的正实数矩阵A,满足XWW性。
称一个N × N的矩阵满足XWW性当且仅当:(1)A[N][N]=0;(2)矩阵中每行的最后一个元素等于该行前N-1个数的和;(3)矩阵中每列的最后一个元素等于该列前N-1个数的和。
现在你要给A中的数进行取整操作(可以是上取整或者下取整),使得最后的A矩阵仍然满足XWW性。同时XWW还要求A中的元素之和尽量大。
Input
第一行一个整数N,N ≤ 100。
接下来N行每行包含N个绝对值小于等于1000的实数,最多一位小数。
Output
输出一行,即取整后A矩阵的元素之和的最大值。无解输出No。
Sample Input
4
3.1 6.8 7.3 17.2
9.6 2.4 0.7 12.7
3.6 1.2 6.5 11.3
16.3 10.4 14.5 0
Sample Output
129
HINT
【数据规模与约定】
有10组数据,n的大小分别为10,20,30...100。
【样例说明】
样例中取整后满足XWW性的和最大的矩阵为:
3 7 8 18
10 3 0 13
4 1 7 12
17 11 15 0
题解
有源汇有上下界网络流 ,
因为是可以向上或者是向下取整,那也就是说一个数他的变化范围是[(int)a[i][j] , (int)a[i][j]+1];
从S向每一行连边 ,容量范围是[(int)a[i][n] , (int)a[i][n]+1];
从每一列向T连边, 容量范围是[(int)a[n][i] , (int)a[n][i]+1];
然后 第i行向第j列连[(int)a[i][j] , (int)a[i][j]+1] 的边
对于 1.0 这种 x.0 的不用连边 , 但是要留出去下限(我居然直接略过了。。。)
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<set>
#include<map>
using namespace std;
const int N = 1e4+100 , inf = 1e8;
inline int read()
{
register int x = 0 , f = 0; register char c = getchar();
while(c < '0' || c > '9') f |= c == '-' , c = getchar();
while(c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0' , c = getchar();
return f ? -x : x;
}
int n , S , T , s , t , cnt = 1 , sum;
double a[120][120];
int head[N] , b[120][120] , du[N] , d[N];
struct edge{ int v , nex , c; } e[N<<4];
inline void add(int u , int v , int c) { e[++cnt].v = v; e[cnt].nex = head[u]; e[cnt].c = c; head[u] = cnt; e[++cnt].v = u; e[cnt].nex = head[v]; e[cnt].c = 0; head[v] = cnt; return ; }
queue<int> q;
bool bfs()
{
for(int i = 1 ; i <= T+2 ; ++i) d[i] = 0; q.push(S); d[S] = 1;
while(q.size())
{
int x = q.front(); q.pop();
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v; if(d[v] || e[i].c == 0) continue;
d[v] = d[x] + 1; q.push(v);
}
}
return d[T] != 0;
}
int dfs(int x , int flow)
{
if(x == T || flow == 0) return flow;
int res = 0 , k;
for(int i = head[x] , v; i ; i = e[i].nex)
{
v = e[i].v;
if(d[v] == d[x] + 1 && e[i].c)
{
k = dfs(v , min(e[i].c , flow));
if(k) { e[i].c -= k; e[i^1].c += k; res += k; flow -= k; if(flow == 0) return res; }
else d[v] = 0;
}
}
return res;
}
int Dinic()
{
int ans = 0;
while(bfs()) ans += dfs(S , inf);
return ans;
}
void solve()
{
s = n*2+1; t = s+1; S = t+1; T = S+1;
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) b[i][j] = (int)a[i][j];
for(int i = 1 ; i < n ; ++i)
{
if(a[i][n] != b[i][n]) add(s , i , 1);
du[s] -= b[i][n]; du[i] += b[i][n]; // 相等
if(a[n][i] != b[n][i]) add(i+n , t , 1);
du[i+n] -= b[n][i]; du[t] += b[n][i];
}
for(int i = 1 ; i < n ; ++i) for(int j = 1 ; j < n ; ++j)
{
if(a[i][j] != b[i][j]) add(i , j+n , 1);
du[i] -= b[i][j]; du[j+n] += b[i][j];
}
for(int i = 1 ; i <= T ; ++i) if(du[i] > 0) add(S , i , du[i]) , sum += du[i]; else if(du[i] < 0) add(i , T , -du[i]);
add(t , s , inf);
int ans = Dinic();
if(ans != sum) puts("No");
else
{
S = s; T = t;
cout << Dinic() * 3 << '\n';
}
return ;
}
int main()
{
n = read();
for(int i = 1 ; i <= n ; ++i) for(int j = 1 ; j <= n ; ++j) scanf("%lf" , &a[i][j]);
solve();
return 0;
}