http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1815
tarjan缩点后在DAG上递推即可。
每个点维护所有根到它的路径上的值的最大值,严格次大值,最大的“根到这个点的一条路径中的严格次大值”(也就是答案)。
注意所有根到它的路径上的值的严格次大值不是答案。
时间复杂度\(O(n)\)。
#include<cstdio>
#include<bitset>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 400003;
const int M = 2000003;
struct node {int nxt, to;} E[M], E2[M], E3[M];
int cnt = 0, cnt3 = 0, point[N], point2[N], cur[N], du[N], point3[N];
void ins(int u, int v) {E[++cnt] = (node) {point[u], v}; point[u] = cnt;}
void ins2(int u, int v) {
E2[++cnt] = (node) {point2[u], v}; point2[u] = cnt;
E3[++cnt3] = (node) {point3[v], u}; point3[v] = cnt3;
}
bitset <N> inst;
int dfn[N], low[N], tot = 0, a[N], sta[N], statop, st[N], top, bel[N], n, m, q, s, fa[N];
void tarjan(int x) {
st[top = 1] = x; statop = 0;
while (top) {
int u = st[top];
if (!dfn[u]) {
dfn[u] = low[u] = ++cnt;
sta[++statop] = u;
inst[u] = 1;
}
if (cur[u]) {
int v = E[cur[u]].to;
if (!dfn[v]) fa[st[++top] = v] = u;
else if (inst[v]) low[u] = min(low[u], dfn[v]);
cur[u] = E[cur[u]].nxt;
} else {
low[fa[u]] = min(low[fa[u]], low[u]);
if (dfn[u] == low[u]) {
++tot;
while (sta[statop] != u) {
inst[sta[statop]] = 0;
bel[sta[statop]] = tot;
--statop;
}
inst[u] = 0;
bel[u] = tot;
--statop;
}
--top;
}
}
}
bitset <N> vis;
int max1[N], max2[N], max3[N], qu[N], A[4];
void BFS() {
int p = 0, q = 1;
vis[qu[1] = bel[s]] = 1;
while (p != q) {
int u = qu[++p];
for (int i = point2[u]; i; i = E2[i].nxt) {
int v = E2[i].to;
++du[v];
if (!vis[v]) {
vis[v] = 1;
qu[++q] = v;
}
}
}
p = 0; q = 1; qu[1] = bel[s];
while (p != q) {
int u = qu[++p];
for (int i = point3[u]; i; i = E3[i].nxt) {
int v = E3[i].to;
if (vis[v]) {
if (max1[v] > max1[u]) {max3[u] = max1[u]; max1[u] = max1[v];}
else if (max1[v] < max1[u] && max1[v] > max3[u]) max3[u] = max1[v];
if (max3[v] > max1[u]) {max3[u] = max1[u]; max1[u] = max3[v];}
else if (max3[v] < max1[u] && max3[v] > max3[u]) max3[u] = max3[v];
}
}
for (int i = point2[u]; i; i = E2[i].nxt) {
int v = E2[i].to;
max2[v] = max(max2[v], max2[u]);
if (max1[u] != max1[v]) max2[v] = max(max2[v], min(max1[u], max1[v]));
else max2[v] = max(max2[v], max(max3[u], max3[v]));
if (--du[v] == 0) qu[++q] = v;
}
}
}
int main() {
scanf("%d%d%d%d", &n, &m, &q, &s);
for (int i = 1; i <= n; ++i)
scanf("%d", a + i);
int u, v;
for (int i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
ins(u, v);
}
cnt = 0;
for (int i = 1; i <= n; ++i)
cur[i] = point[i], max1[i] = max2[i] = -1;
for (int i = 1; i <= n; ++i)
if (!dfn[i]) tarjan(i);
cnt = 0;
for (int i = 1; i <= n; ++i)
for (int j = point[i]; j; j = E[j].nxt)
if (bel[i] != bel[E[j].to])
ins2(bel[i], bel[E[j].to]);
for (int i = 1; i <= n; ++i) {
int t = bel[i];
if (a[i] > max1[t]) max2[t] = max1[t], max1[t] = a[i];
else if (a[i] < max1[t] && a[i] > max2[t]) max2[t] = a[i];
}
for (int i = 1; i <= tot; ++i) max3[i] = max2[i];
BFS();
for (int i = 1; i <= q; ++i) {
scanf("%d", &u);
if (!vis[bel[u]]) printf("-1 ");
else if (max2[bel[u]] == -1) printf("0 ");
else printf("%d ", max2[bel[u]]);
}
return 0;
}