首先,这个整数的标准分解非常的显然易见对吧:
一般我们要把一个数分解成这个样子我们可以这样写:
#include<cstdio>
int p[],w[],k;
void factorize(int n)
{
for(int i=;i*i<=n;i++)
if(n%i==)
{
p[++k]=i;
while(n%i==)
n/=i,w[k]++;
}
if(n!=)
p[++k]=n,w[k]=;
}
int main()
{
int n;
scanf("%d",&n);
factorize(n);
for(int i=;i<k;i++)
printf("%d^%d*",p[i],w[i]);
printf("%d^%d",p[k],w[k]);
}
由于是分解质数,而且质数除了2之外都是奇数,所以可以在枚举i的时候每次i+=2
例题:ABC142D(手边没有什么好题了,只是因为最近做到了它2333)
要找互质的公因数,就相当于找最大公因数的最多互质的因数。(这个表述...相信你们能懂
之前写一直T了,于是找了另外一种方法,后面才发现之前的哪里有问题
#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
#define N 100005
#define ll long long
#define MOD 1000000007
ll x,y;
map<ll,bool> vis;
ll p[N];
int pn;
ll gcd(ll a,ll b)
{
if(b==) return a;
else return gcd(b,a%b);
}
int main()
{
scanf("%lld %lld",&x,&y);
ll d=gcd(x,y);
int ans=;
if(d%==) ans++;
while(d%==)
d/=;
for(ll i=;i*i<=d;i+=)//写成i<=d/i就可以不开ll 否则不开ll就会乘爆 然后T掉
if(d%i==)
{
ans++;
while(d%i==)
d/=i;
}
if(d!=) ans++;
printf("%d\n",ans);
return ;
}
就是我注释的那个地方,要注意那样的BUG了
最后采用了这种写法:
#include<cstdio>
#include<algorithm>
#include<map>
#include<vector>
#include<cmath>
using namespace std;
#define N 100005
#define ll long long
#define MOD 1000000007
ll x,y;
map<ll,bool> vis;
ll p[N];
int pn;
vector<ll>st;
ll gcd(ll a,ll b)
{
if(b==) return a;
else return gcd(b,a%b);
}
bool is_prime(ll x)
{
if(x==) return ;
if(x==||x==) return ;
if(x%!=&&x%!=) return ;
int s=sqrt(x);
for(int i=;i<=s;i+=)
if(x%i==||x%(i+)==)
return ;
return ;
}
int solve(ll n)
{
int ans=;
if(n==) return ;
ll i=;
while(i<n)
{
if(is_prime(n))
{
st.push_back(n);
if(vis[n]==)ans++;
vis[n]=;
return ans;
}
for(int i=;i<n;i++)
{
if(n%i==)
{
st.push_back(i);
if(vis[i]==)ans++;
vis[i]=;
n/=i;
break;
}
}
}
st.push_back(n);
if(vis[n]==)ans++;
vis[n]=;
return ans;
}
int main()
{
scanf("%lld %lld",&x,&y);
ll d=gcd(x,y);
printf("%d\n",solve(d));
return ;
}
其实感觉和上面的做法差不多,直接看也就能看懂,但是网上据说是$n^{1/4}$的复杂度,那么还是了解一下,也没有什么坏处。(对于这道题来说其实不需要存因数的啦)
关于is_prime的素数判断,还是说一下吧。
如果不加这个判断,那么在$n$变成一个很大的质数的时候,这个算法就会退化到$O(n)$级别。
对于每一个$>=5$的数可以表示为$6x-1$(也相当于$6x+5$),$6x$,$6x+1$,$6x+2$,$6x+3$,$6x+4$,$6x+5$中的一种。
而$6x$,$6x+2=2(3x+1)$,$6x+3=3(x+1)$,$6x+4=2(3x+2)$,都不可能是素数。
所以我们对于一个数n,直接先判断它模$6$是否余$5$或余$1$,不是的话直接返回false
但是是的话也不一定是素数,还要再判断一下。
每个数都能进行质因数分解,所以我们只要判断用它除前面的素数能否除尽就可以了.
$6x+1$,$6x+5$这样的数显然不可能除的尽$2$和$3$,所以我们从$5$开始判断。
下一个除以$7$,按照上面的讨论,下一个为$11$和$13$。
网上有人说,以此类推,可以把步长增加到$6$来加快运行速度。
不知道怎么证明,但是验证了一下是对的。(怎么感觉好水...)
update2019.10.9 关于把步长增加到$6$
发现自己好傻啊
前面已经说了,3以后的质数都是除以6余1或者5的数
那么连续的两个质数差为2
当然,除以6余1或者5的数不一定都是质数,不过这没有关系,我们不一定要让除数是一个质数。
莫名其妙地就干完了这篇博客。
写得好水呀。
嘤嘤嘤我在干什么。