功效分析
功效分析可以帮助在给定置信度的情况下,判断检测到给定效应值时所需的样本量。反过来,它也可以帮助你在给定置信度水平情况下,计算在某样本量内能检测到给定效应值的概率。如果概率低得难以接受,修改或者放弃这个实验将是一个明智的选择。
10.1假设检验速览
在研究过程时,研究者通常关注四个量:样本大小、显著性水平、功效和效应值。样本大小指的是实验设计中每种条件/组中观测的数目。显著性水平(也称为alpha)由I型错误的概率来定义。也可以把它看做是发现效应不发生的概率。功效通过1减去II型错误的概率来定义。我们可以把它看做是真实效应发生的概率。效应值指的是在备择或研究假设下效应的量。效应值的表达式依赖于假设检验中使用的统计方法。
10.2 用pwr 包做功效分析
函 数 功效计算的对象 |
pwr.2p.test() 两比例(n相等) |
pwr.2p2n.test() 两比例(n不相等) |
pwr.anova.test() 平衡的单因素ANOVA |
pwr.chisq.test() 卡方检验 |
pwr.f2.test() 广义线性模型 |
pwr.p.test() 比例(单样本) |
pwr.r.test() 相关系数 |
pwr.t.test() t检验(单样本、两样本、配对) |
pwr.t2n.test() t检验(n不相等的两样本) |
10.2.1 t 检验
对于t检验,pwr.t.test()函数提供了许多有用的功效分析选项,格式为:
function (n = NULL, d = NULL, sig.level = 0.05, power = NULL,
type = c("two.sample","one.sample", "paired"), alternative =c("two.sided", "less", "greater"))
n为样本大小。
d为效应值,即标准化的均值之差。d =(m-m)/s
sig.level表示显著性水平(默认为0.05)。
power为功效水平。
type指检验类型:双样本t检验(two.sample)、单样本t检验(one.sample)或相依样本t检验(paired)。默认为双样本t检验。
alternative指统计检验是双侧检验(two.sided)还是单侧检验(less或greater)。默认为双侧检验。
>library(pwr)
>pwr.t.test(d=.8,sig.level=.05,power=.9,type="two.sample",alternative="two.sided")
Two-samplet test power calculation
n =33.82554
d =0.8
sig.level =0.05
power=0.9
alternative = two.sided
NOTE: n is number in*each* group
10.2.2 方差分析
pwr.anova.test()函数可以对平衡单因素方差分析进行功效分析。格式为:
function (k = NULL, n = NULL, f = NULL, sig.level =0.05, power = NULL)其中,k是组的个数,n是各组中的样本大小
对于单因素方差分析,效应值可通过f来衡量:
其中,pi = ni/N,
ni = 组i的观测数目
N = 总观测数目
μi
= 组i均值
μ= 总体均值
σ2 = 组内误差方差
> pwr.anova.test(k=5,f=.25,sig.level=.05,power=.8)
Balancedone-way analysis of variance power calculation
k= 5 #结果表明,总样本大小为5 × 39,即195
n= 39.1534
f= 0.25
sig.level= 0.05
power= 0.8
NOTE: n is number in each group
10.2.3 相关性
pwr.r.test()函数可以对相关性分析进行功效分析
function (n = NULL, r = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided", "less", "greater"))
n是观测数目,r是效应值(通过线性相关系数衡量),sig.level是显著性水平,power是功
效水平,alternative指定显著性检验是双边检验(tow.sided)还是单边检验(less或greater)。
>pwr.r.test(r=.25,sig.level=.05,power=.90,alternative="greater")
approximate correlation power calculation (arctangh transformation)
n= 133.2803
r= 0.25
sig.level= 0.05
power= 0.9
alternative= greater
10.2.4 线性模型
对于线性模型(比如多元回归),pwr.f2.test()函数可以完成相应的功效分析,格式为:
function (u = NULL, v = NULL, f2 = NULL, sig.level = 0.05, power = NULL) ,u和v分别是分子自由度和分母自由度,f2是效应值。
当要评价一组预测变量对结果的影响程度时,适宜用第一个公式来计算f2;当要评价一组预测变量对结果的影响超过第二组变量(协变量)多少时,适宜用第二个公式。
> pwr.f2.test(u=3,f2=.0769,sig.level=.05,power=.90)
Multiple regression power calculation
u = 3
v = 184.2426
f2 = 0.0769
sig.level = 0.05
power = 0.9
在多元回归中,分母的自由度等于N - k - 1,N是总观测数,k是预测变量数。本例中,N - 7
- 1 = 185,即需要样本大小N = 185 + 7 + 1 = 193。
10.2.5 比例检验
当比较两个比例时,可使用pwr.2p.test()函数进行功效分析。格式为:
function (h = NULL, n = NULL, sig.level = 0.05, power = NULL,
alternative = c("two.sided", "less", "greater"))
其中,h是效应值,n是各组相同的样本量。效应值h定义如下:
可用ES.h(p1, p2)函数进行计算。
当各组中n不相同时,则使用函数:
10.2.6 卡方检验
pwr.chisq.test()函数可以评估卡方检验的功效、效应值和所需的样本大小。格式为:
function (w = NULL, N = NULL, df = NULL, sig.level = 0.05, power = NULL)
其中,w是效应值,N是总样本大小,df是自由度。此处,效应值w如下定义:
p0i = H0时第i单元格中的概率
p1i = H1时第i单元格中的概率
> prob<-matrix(c(.42,.28,.03,.07,.10,.10),byrow=TRUE,nrow=3)
> ES.w2(prob)
[1] 0.1853198
> pwr.chisq.test(w=.1853198,df=2,sig.level=.05,power=.9)
Chi squared power calculation
w = 0.1853198
N = 368.4529
df = 2
sig.level = 0.05
power = 0.9
NOTE: N is the number of observations
10.2.7 在新情况中选择合适的效应值
功效分析中,预期效应值是最难决定的参数。
单因素ANOVA中检测显著效应所需的样本大小
> library(pwr)
> es<-seq(.1,.5,.01)
> nes<-length(es)
> samsize<-NULL
> for(i in 1:nes){
+ result<-pwr.anova.test(k=5,f=es[i],sig.level=.05,power=.9)
+ samsize[i]<-ceiling(result$n)
+ }
> plot(samsize,es,type="l",lwd=2,col="red",
+ ylab="effect size",
+ xlab="sample size (per cell)",
+ main="one way anova with power=.90 and alpha=.05")
10.3 绘制功效分析图形
假设对于相关系数统计显著性的检验,计算一系列效应值和功效水平下所需的样本量,此时可用pwr.r.test()函数和for循环来完成任务检验各种效应值下的相关性所需的样本量曲线
library(pwr)
r<-seq(.1,.5,.01)
nr<-length(r)
p<-seq(.4,.9,.1)
np<-length(p)
samsize<-array(numeric(nr*np),dim=c(nr,np))
for(i in 1:np){
for(j in 1:nr){
result<-pwr.r.test(n=NULL,r=r[j],
sig.level=.05,power=p[i],
alternative="two.sided")
samsize[j,i]<-ceiling(result$n)
}
xrange<-range(r)
yrange<-round(range(samsize))
colors<-rainbow(length(p))
plot(xrange,yrange,type="n",
xlab="correlationcoefficient (r)",
ylab="sample size(n)")
for(i in 1:np){
lines(r,samsize[,1],type="l",lwd=2,col=colors[i])
}
abline(v=0,h=seq(0,yrange[2],50),lty=2,col="grey89")
abline(h=0,v=seq(xrange[1],xrange[2],.02),lty=2,col="grey89")
title("sanple size ")
legend("topright",title="power",as.character(p),fill=colors)
10.4 其他软件包
asypow 通过渐进似然比方法计算功效
PwrGSD 组序列设计的功效分析
pamm 混合模型中随机效应的功效分析
powerSurvEpi 流行病研究的生存分析中功效和样本量的计算
powerpkg 患病同胞配对法和TDT(TransmissionDisequilibrium Test,传送不均衡检验)设
计的功效分析
powerGWASinteractionGWAS交互作用的功效计算
pedantics 一些有助于种群基因研究功效分析的函数
gap 一些病例队列研究设计中计算功效和样本量的函数
ssize.fdr 微阵列实验中样本量的计算