Vijos 1404 遭遇战
背景
你知道吗,SQ Class的人都很喜欢打CS。(不知道CS是什么的人不用参加这次比赛)。
描述
今天,他们在打一张叫DUSTII的地图,万恶的恐怖分子要炸掉藏在A区的SQC论坛服务器!我们SQC的人誓死不屈,即将于恐怖分子展开激战,准备让一个人守着A区,这样恐怖分子就不能炸掉服务器了。(一个人就能守住??这人是机械战警还是霹雳游侠?)
但是问题随之出现了,由于DustII中风景秀丽,而且不收门票,所以n名反恐精英们很喜欢在这里散步,喝茶。他们不愿意去单独守在荒无人烟的A区,在指挥官的一再命令下,他们终于妥协了,但是他们每个人都要求能继续旅游,于是给出了自己的空闲时间,而且你强大的情报系统告诉了你恐怖份子计划的进攻时间(从s时刻到e时刻)。
当然,精明的SQC成员不会为你免费服务,他们还要收取一定的佣金(注意,只要你聘用这个队员,不论他的执勤时间多少,都要付所有被要求的佣金)。身为指挥官的你,看看口袋里不多的资金(上头真抠!),需要安排一个计划,雇佣一些队员,让他们在保证在进攻时间里每时每刻都有人员执勤,花费的最少资金。
格式
输入格式
第一行是三个整数n(1≤n≤10000),s和e(1≤s≤e≤90000)。
接下来n行,描述每个反恐队员的信息:空闲的时间si, ei(1≤si≤ei≤90000)和佣金ci(1≤ci≤300000)。
输出格式
一个整数,最少需支付的佣金,如果无解,输出“-1”。
样例1
样例输入1
3 1 5
1 3 3
4 5 2
1 1 1
样例输出1
5
提示
敌人从1时刻到4时刻要来进攻,一共有3名反恐队员。第1名从1时刻到3时刻有空,要3元钱(买糖都不够??)。以此类推。
一共要付5元钱,选用第1名和第2名。
题解
此题考察了建图的能力,我们只需要对于区间[l,r+1)连一条边,l,r为每一个人参战的时间,然后每一个时间向前一时刻连边,然后跑一个最短路即可
Code
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define ll long long
#define REP(i,a,b) for(register int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(register int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(register int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=,p=;char ch=getchar();
while(!((''<=ch && ch<='') || ch=='-'))ch=getchar();
if(ch=='-')p=-,ch=getchar();
while(''<=ch && ch<='')sum=sum*+ch-,ch=getchar();
return sum*p;
}
const int maxn=1e5+;
int n=,m,s,t; struct node {
int v,next,w;
};
node e[maxn*];
int cnt,start[maxn];
void addedge(int u,int v,int w)
{
e[++cnt]={v,start[u],w};
start[u]=cnt;
} void init()
{
m=read();s=read();t=read();
REP(i,,n)addedge(i,i-,);
REP(i,,m)
{
int u=read(),v=read()+,w=read();
addedge(u,v,w);
}
} int dist[maxn],vis[maxn];
#include<queue>
void doing()
{
queue<int>q;
q.push(s);
vis[s]=;
memset(dist,,sizeof(dist));
dist[s]=;
do{
int u=q.front();q.pop();
EREP(i,u)
{
int v=e[i].v;
if(dist[v]>dist[u]+e[i].w)
{
dist[v]=dist[u]+e[i].w;
if(!vis[v])
{
vis[v]=;
q.push(v);
}
}
}
vis[u]=;
}while(!q.empty());
if(dist[t+]==dist[])
cout<<-<<endl;
else
cout<<dist[t+]<<endl;
} int main()
{
init();
doing();
return ;
}