- 考虑对电灯进行差分:若第i个电灯和第i + 1个电灯状态不同,则在第i个位置上放一个球
这样我们就放置了不超过2n个球,且必然是偶数个
于是问题转化为:有m个球,每一步可以把一个球平移奇质数个位置,两个球位于相同位置则同时被消除,计算至
少多少步能消除所有球 - 然后我们发现, 假如两个东西距离为奇质数cost为1, 偶数cost为二(哥德巴赫猜想), 其余奇数的话cost为3
- 然后发现一种贪心方法, 是尽量匹配cost为1的, 然后分奇偶性各自用2覆盖,看看最后剩下的那个直接判断即可
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<iostream>
#define ll long long
#define mmp make_pair
#define M
using namespace std;
int read() {
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
struct Edge{
int v, c, nxt;
}e[200010];
int head[10010], tot = 1;
void build(int u, int v, int c)
{
e[++tot] = (Edge){v, c, head[u]};
head[u] = tot;
return ;
}
void insert(int u, int v, int c)
{
build(u, v, c);
build(v, u, 0);
return ;
}
int dep[10010];
int S, T;
queue<int> q;
bool bfs()
{
memset(dep, 0, sizeof(dep));
dep[S] = 1;
q.push(S);
while(!q.empty())
{
int u = q.front();
q.pop();
for(int i = head[u]; i; i = e[i].nxt)
if(!dep[e[i].v]&&e[i].c)
{
dep[e[i].v] = dep[u] + 1;
q.push(e[i].v);
}
}
if(dep[T])return true;
return false;
}
int cur[10010];
int dfs(int u, int flow)
{
if(u == T)return flow;
for(int &i = cur[u]; i; i = e[i].nxt)
if(e[i].c&&dep[e[i].v] == dep[u] + 1)
{
int d = dfs(e[i].v, min(e[i].c, flow));
if(d){
e[i].c -= d;
e[i^1].c += d;
return d;
}
}
return 0;
}
int dinic()
{
int ans = 0;
while(bfs())
{
for(int i = S; i <= T; i++)
cur[i] = head[i];
int d;
while(d = dfs(S, 1e9))ans += d;
}
return ans;
}
int prime[1000010], cnt;
bool vis[10000010];
int x[1010];
int posx[1010], posy[1010];
int cnt1, cnt2;
void push(int x)
{
if(x&1)posx[++cnt1] = x;
else posy[++cnt2] = x;
}
int main(){
int N = 10000000;
vis[1] = true;
for(int i = 2; i <= N; i++)
{
if(!vis[i])prime[++cnt] = i;
for(int j = 1; j <= cnt&&i * prime[j] <= N; j++)
{
vis[i * prime[j]] = true;
if(i%prime[j] == 0)break;
}
}
vis[2] = true;
int t = read();
while(t--)
{
memset(head, 0, sizeof(head));
cnt1 = cnt2 = 0; tot = 1;
int n = read();
for(int i = 1; i <= n; i++)
{
x[i] = read();
if(i == 1||x[i - 1] != x[i] - 1)push(x[i]);
if(i> 1&&x[i - 1] != x[i] - 1)push(x[i - 1] + 1);
}
push(x[n] + 1);
S = 0, T = cnt1 + cnt2 + 1;
for(int i = 1; i <= cnt1; i++)
insert(S, i, 1);
for(int i = 1; i <= cnt1; i++)
for(int j = 1; j <= cnt2; j++)
if(!vis[max(posx[i] - posy[j], posy[j] - posx[i])])
insert(i, cnt1 + j, 1);
for(int i = 1; i <= cnt2; i++)
insert(cnt1 + i, T, 1);
int ans = dinic();
printf("%d\n", ans + (cnt1 - ans)/2 * 2 + (cnt2 - ans)/2 * 2 + (cnt1 - ans)%2 * 3);
}
return 0;
}