题意

题目链接

Sol

非常有思维含量的一道题,队爷的论文里介绍了一种\(N \sqrt{N}\)的暴力然鹅看不懂。。

看了一下clj的\(O(nlogn)\)的题解,又翻了翻题交记录,发现\(O(n)\)的做法也不是特别难。。

首先考虑所有两端颜色相同的非树边。直接对它的数量讨论:

若为\(0\),那么删哪一条都可以

若为\(1\),那么只能删该奇环上的边

若\(>1\),所有的非树边都不能删(不管怎么删都会有一个奇环),那么考虑所有的树边,一条树边能被删掉当且仅当:所有奇环都经过了这条边 且没有偶环经过了这条边

那么直接在树上打差分标记即可

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 1e5 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, Pre[MAXN], even[MAXN], odd[MAXN], col[MAXN], cly, last, ans[MAXN], dep[MAXN];
struct Edge {
int u, v, id, nxt;
}E[MAXN];
int head[MAXN], num;
void AddEdge(int x, int y, int id) {
E[num] = (Edge) {x, y, id, head[x]};
head[x] = num++;
}
void dfs(int x, int fa) {
col[x] = col[fa] ^ 1; dep[x] = dep[fa] + 1;
for(int i = head[x]; ~i; i = E[i].nxt) {
int to = E[i].v;
if(col[to] == -1) {
Pre[to] = i; dfs(to, x);
even[x] += even[to];
odd[x] += odd[to];
} else if(dep[to] + 1 < dep[x]){
if(col[to] == col[x]) last = i, cly++, odd[x]++, odd[to]--;
else even[x]++, even[to]--;
}
}
}
int main() {
memset(head, -1, sizeof(head));
N = read(); M = read();
for(int i = 1; i <= M; i++) {
int x = read(), y = read();
AddEdge(x, y, i); AddEdge(y, x, i);
}
memset(col, -1, sizeof(col)); col[0] = 0;
for(int i = 1; i <= N; i++) if(col[i] == -1) dfs(i, 0);
if(cly == 0) {
printf("%d\n", M);
for(int i = 1; i <= M; i++) printf("%d ", i);
return 0;
}
if(cly == 1) ans[E[last].id] = 1;
for(int i = 1; i <= N; i++) if(odd[i] == cly && !even[i]) ans[E[Pre[i]].id] = 1;
int cnt = 0;
for(int i = 1; i <= M; i++) if(ans[i]) cnt++;
printf("%d\n", cnt);
for(int i = 1; i <= M; i++) if(ans[i]) printf("%d\n", i);
return 0;
}
04-28 22:33