tensorflow之神经网络实现流程总结

  • 1.数据预处理preprocess
  • 2.前向传播的神经网络搭建(包括activation_function和层数)
  • 3.指数下降的learning_rate
  • 4.参数的指数滑动平均EMA
  • 5.防止过拟合的正则化regularization
  • 6.loss损失函数构造(loss_ + regularization)
  • 7.后向传播和梯度下降(learning_rate + loss)
  • 8.评价函数的构造(accuracy + EMA)
  • 9.run 模型(用variable 而不是 EMA)
  • 10.模型保存
04-28 21:45