题目
解决代码及点评
#include <stdio.h>
#include <stdlib.h>
/*
编写一函数求三个整数的最大值。
*/
void f62(int a ,int b,int c)
{
int temp=a; // 取三个数的最大数,先取a
if (temp<b)
{
temp=b; // 如果a比b小,换b
}
if (temp<c)
{
temp=c; // 如果a,b中大的那个比c小,换c
}
printf("最大数是%d\n",temp);
} void main()
{
int a,b,c;
printf("输入三个整数a,b,c:");
scanf_s("%d%d%d",&a,&b,&c);
f62(a,b,c);
system("pause");
}
代码编译以及运行
由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:
1)新建工程
2)选择工程
3)创建完工程如下图:
4)增加文件,右键点击项目
5)在弹出菜单里做以下选择
6)添加文件
7)拷贝代码与运行
程序运行结果
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACesSURBVHhe7d0JnCVVfS/wf88mi6yG2SAxJq5hG7aRRUDZBhVc4oK4ocZnYkxiAAOKMfF9iCgGEaIvZHEZcc/L05eooLINKhiUTTaNPl7CMwzDDMMuyzAz/erUvdVTXVP39u3u6T4DfL+TP7fq1DmnTtWdT/pn3e6eoS/907eGf/7vP43KNT+6vLsFAABT48yzP9Xd6hi65Rd3Dl9/3dXx5c//XQwNDcWLDjs8Dn7hkpg7d163CwAAbBqPPvJg3HzjtfGZT386hoeHR8JpGUpPPentscMOO8a73n1KPBRzygMAADBVFmw7J844/S/innvuLoNpGUrfe/J/i/f/5YfjoaGndLsBAMDUWrDN7Djl5D+Oj3zsH2Po2GOPHT7ggIPjwKN/t3sYAACmx4qfXxdf/OL5nVD6l6f/dfxqeHb3EAAATI/n/vrcePtbX98JpZ/67JfiZ/+1qnsIAACmx3N32akMpTO6+zGklFJKKaXUNFdl5Enpz2+/q9sEAADT49k7/9roj+9/sXx19xAAAEyPZy182uhQ+n/uuLt7CADgieFXD/wqfv7v/xH33PNAt2Xq7bDDNvHs5zwjtt5m63LfGjpr6OWZC3YcXyi9+F++3N0an996zu7xm8/+nZgxY+TbVwEApsWV3782Fu3x2zF33tO6LVNv5Z2r4/obbo0DD9673LeGzhp62SiU3rrinu6hdkO/urO71W7G0FAMzRiK4eEo/8moVMl3L7okXrDkFbHllluV+wAA0+WS714Zx7z0BXH3/Q91W6bejttuFd/81g/i8KMOLPetobOGXn57/g6Nn75PobJP7bloUd/afc89Y7fd94jd99gj9ii2q/ZSEVDb5tzs6q5L4n+cdlZ8766WY1Nd9XNvLutoOz6ltSq+94mT4p9vaTumlFJKTazKB2fTWG3n21zXUP0I/Ib97rG2P+Wx1L3+2h1T/enupxr0misjT0r/Y+V93aZ2+z57fiy7/Ob4+8t/HjNmrY8Zs4djxpx1MbOoM191ROy44w7dnh2Hn/TVuOTs4+IjZ50bBy95RWy19VO7Ryor4/Jzz4jv3tHdLe0Tb/jIm+J3unsb3Bj/870XxtyTT4lDd+o2lTaeY9Gbz4nXbDzBYFZdFJ/42HWxx0bn2ZR6XEv93DEd6+ih7R7c8vl4//nXdHfSe7Qobh7w/ej9nrbpjF955CTew1a9/v4k6din4/pye2Ec1eyz0bVX19JnXHkPvxUruruT+jsJwKRc/J0r4thjD5n2J4Tf+Mb34oglB5X7g67hymXL4tp/u6q719ve+z8/DnzhC7t77Xqu4b5fFXvp0+wNYbBjuPgzFD+8PK3hR922dK7FceAhL4wrL788rr1qw9rKNRx6aPkJeSdXdj4hHx5OQbOzu+P2W49aQy/PmLvd6I/v/3PV/d1D7fZ91ry4rAil//qzX8bMFEhnrytqfbG9Lt598EF9Q+khR7+yPZSe86G488hz47W7dptuPj9OKwLAojfX2rpWXXZmfCXeGn/8orndliTN8dmIN5zaCQQpDJx1bezxnu7+tGu5phbt17KZSu/JRQvixD89Muq3tPf7Mfh7urHB7t9E9FvvDXu+v9NerjXijWe+uRM8e1x7/3E3xj+dsyJeVI0p/07eEYdXcwIwrVIYe9kxB8c9Dz7SbZl6Ozx1i/jXb35/VCAcZA3nnvHh+OqX/ra719txr//DePdp7+vuteu1htWjgnE3PZZbQ2Us/cRHzox//urfl23Jq4/7/dinCKDXFGG52f7H7z21u9fuaUUwrq+hl9/cadvRH9+nR6z96lePrCn77bD97Pi/d6+In676f/Gzu26Lf1/9n2V7ki6r+l7SnXbf8C9Etc03o7gPxUv52HakbbcT4iPvOSbuPP/z8dN6e1Hzdts74oafxOpR7d05ij/l/tyj4oi9l8cNN6+s9ZnOarmmlmq/ls2xVsb3Lr4jjn7DUTGvcazv+1Fv6/OeblyD3b+JVOt6V/0kbrhj3zjisHmd/d2OjqMXXhM335KO9772/uP2iNedWBszd8/Yc+Edcdeq7r5SSqlprVLxmramrbrnHbWGQlpFvz/jUR/X/qejvob0sz9DM2aU6+u8prWm107bjOJ1nwP2LwPn+vXry/qnL59XBtL0WrWVQbXoV85XjEnj0g+0d6pzvnLO9IW9UK2hV1U2fE9pudA+1e131W2/iLWzH4rZW66N2Vs8FrOKStIj39SneiPmP/2X5WvSOl915qL/qPb56Yv41XFT+r7Cuy6Kc085M5al729M7fHNuDS1j5qjOF99fLdpaMadseycP4mv3nJjfPWUP4n3nnNR3FX26e6P1PlxSzW2PF9tv9H33GV3dtvbjl1U7H8ovr084rrPFW3d89217MyRPiPnaruW+rlHrSOdp7gHy86vnavXOrr9Rq61x/lTleeo2tN9qrdX67ghfhL7RFy6od/IuXu+H+n+19uKqr+nZVuv+1qNH328dW1t+/3uRes9XxF37L1X7DYyfn7MnR+xYlWxnn7X3m/cSFtVK+PO5QuL4832VO33ofOebbiuW75SHP/KjX3HKKWUaq/yy0r52CxtT08Np5e0VV9D2k5fH/tUXXoa2qy6tvH1Kv7T6VdbQzKzaC/DY/d1ZnEsVRlSi9eDDzss9j3wgHjt8e+MdevWlfXlL3xyZDu1p+Op34yhmWUITeOqgNkJo51wWqnW0KsqG0JpOVHvKv5T9hsJo095rHhdE7Of0nmCWpuzdM5hZ3a3es1dLLpzsG97ZzNtL4jDluwX191wQ3d/Q9+R/VUXxUXX7hyLdl8wcuy6pdfHHh/7ZHz05CUxd+iG+Mp7/jFWvOQD8dHUluqtQ3H+e4oA0J2jmK07X+p7Qcw/tdvvYx+IRdd/KL5yc3Vs9DwnHr4kji/6vHhhxF5vLdrS+Yr1fPGChXFCda6PvSV2K+duu5b6uevbxWbcHt9esVdnjlNfFnHB0li2Kh3rrCPS+cr53xZD11+9YWzP86+MZRcPxRur9rcWa1nacg9WFeFr+Tfizj27/Uadu/f7UWzU2prt/e5r4z3rt7aN9se4Fy3rvWtl55tfq/2yypZiHX2uve+4eltRt3wp/T15cfe+16v3fZh7+PvihL2vjosuXRlDN58f5694WfzZG/bsO2b03Eoppaoq/lMEnyI8zexfVyxbFuecccaYlfq1jR9Vxdez8rz1NaSvcWXw613J6tWry0pO+sAHRiqpH2sb36zWNRSv1VPNMhRWfYruVVg95LDDY78ieB7/xj+Ke+65Z6TSfmo/+PAikHYD5Ya5NtRIW+M+9KpK5w4U2jrVq5KejM6uAumcNTFnzqNl+/D69eVrq5b5qjnb23eO+enJ0rwlcdLZp8Vh87rHdt8r9r72+rh5VN/b48Iz/yhOObmoM6+JRe/b0D/Z+21VECvq5uvjuoUvizcdMX9k/NDuLy6C5I/jxvSFvbobVd/63CefHhcuj1ixMgWFlnm61Rne3Z83PxbEj+NzJ384Lmv+NHvzWurnrm+nKu7Hi5cs6mzPWxSLiuCb/ldAtY4jd+/2G5ofhx29X3do6tvr/EW/Ny6JoUs/3Lm2z/64HFMcaJy7eK3PX7wfR+1ze1x/U3EP0n7r+9E9d6NG3tN+97Xs13jPer0/qZrvV797kaqx3rnzixtZHetWmS7L7eK1x7X3H7ehbv7SH8Xnht4RJ7X8PRnrPuz2xnfEggtOL96b5fHiE9L/oBp7jFJKqY0r6b709eMrryy/Z3KsSv3G1D1ffQ2pLW31q+TRRx8tKzn79NNHKqkfaxtfr8qoNRQ6oTG1pQA6s9wv29JTz9R35oz4wWWXFtf5w/j4WX8+cs5UaT+1X3HpZcUcRf8USosx5bgqpJbbKZDWzpna+lSl+rLe2qlelTKMloH00fIp6aw5nY/vb7jp5rjhxpvKSt9W+kix+Icffrg81jZfp8qDo9tuvjAuHNo3dp/baC9rUey5z487T5BG2naOl7zvb+Osj6d6fxw+alxz/s7+6LZURWBKQbb8k/Jeais2dn55nFLOu6FOLgNGr3m640a2F8Xry3Fvj6Hz3xV/dtIZcVn5lLFzbNS11M9d3y4qKdu6+6mps58OpJ3Rxza09Tj/qu/Gx096V3xh6O2d63rfy6OTc4tj5Z/u9ryFsXBkrk6lvzAbztX2fnTOv2G/qFHvaXG8533tHq/GjVS3rb62jfY7fcp+I9Vsa663OL7izlg1cnxlrFoRsWB+sZa+195nXLftli++Kz4Xvx9nvbH7PyY2qmKOvvchdego9gYeo5RSqlHF/+ssf9olbfSrwq233jpmldrG12pks7aGVMVO/yqsWbOmrDPPOGWjqo6V2saPqvL/is3OGirpCWaRGjuBsqzuU81uqPz+xZfGj664ctT5TnzPX41sp/Z0/HuXXFJ8/e0E2k6o7Va53Zm3MnIfelRl4FCaTrB8+a3xjt84Jt624BVxwk6viTdsf3y87qlv6s6wQef7DtI3w3Z+6KltvrLSsfSn2r9pabzn08vjpSccXf6gyNCq78TZJ36oFuSGYrclL4+47voNgWA88+++d+xz+7/EFy6phaibLowLoghM5dPVcrVpwpG+l9zU7VfUzV9Y2nnKttGxn8Rl1Zz1cxbrv6zsMz8O/7MPxkt3vj3uXNk9VtToa6mdu7GddqsxZVX7G61jZVz27c5Tz3K/1/lX3hHLi3BTPelddePVsbzt3PP2ir2idr+K+b5zzc6x1x4bQlDr+5H+VPvN97TffU1VjL/2+p+MHFt1yafigtsXx57lE8u0tuWxsvv3YdS6x7oX3Rq13t1fGi8trm9kTPl34eWdp6P9rr3fuHTes/4wvrPgg/GxNzUCaf3v8xj34eYv/H2sOOaDceoxERec/53uese4d0oppTaqZGYRlmYWIalfJY899tiYlbSNr1f58X2hvoZOYKuCYHslbedsVtI2vl7pmpORe1Fsp7WVAbI4nto6r+mpZnfdM2YWgfOK+Kv/fuLIuU497aPx/IMPKl+rtnT8Rz+4orymztPRbhDtnqsKp+X56mvoUZWRXwm14oHO4+BefuNpW8f2WxcXWJx83ZrHYuasmcX27OLIuhheuzbWrE0/eR+xdt3aWLd+fbmItLiz/+a8OPIVr4utN/qVUCviko9+ML51e3c32fkV8d5Tjo6RX9pz57fjrDOujr1O+/M4fF63rRz3qYgTUlt9u3t4RGf+FUf/Xbxhj25T6fr44rv/LqrfPBmxON527ttit7RZnm95HD1q/38Xwadjn9+rzTXq2IY5Vl78V/GRb/zXyLWs/PwfxGfStzYm+/5BnF0ElQ1q64/auUetI633mzF/5B40rnnUOnaJlx67ML517cKR+3hT6/k796a69wv3XRxR9Nn43Mno+zXqHpTq6xk9b6n5niY972tn/IoFi+Oaq6vfkVZ7fwoj97cwat2pYYx70dHv/o0+V99r7zXuhs/ESZ/e8PvdOoq1pPevfI9rf5973IfyPbujum/de7qg+971vHcAtLngG8vilS9/Ydz7q+4Txh4uv/iiMmiNZfELDopDjziyu9du+63nxNf/ZVm85NjO7xLdnNbwwCNFYBul8wCxiITl1uXf/W782/d/0GkqPP/gF8SLjjoqljXa9y/aDy3ay0iZBm7IliO22WLWqDX0Mn+bp4z+PaV3Ptj/Rn398/+Qom53b2OzZ88qDs+Mx9Y8OnJ5yYJff0bsud+BseVWm+6fGV150enx4TuOjY+/uR7wNoHiC/5ff2h5vPhv6sFkao1cy5IVm+bcRSg68cKF8b5TG0FwCk3Z+zFZPe7FZrteADa5b/3rZfGqVx4W9z3UecI4Hbbbanb8r69fGi992YvK/c1pDfc/XF9DynX11NYxVAbUenuV/4q2cki3R3rSOdzpOdIjZcXurwfddsvRa+hl3lPnjO+fGT32+LfGkt99fc867NjXxouOeVUc1WhftPig2GLLLVvnnGjNO+plse/V18ZNLccmU6tu/HEs33lh52PmaarqWi6Z0LnvjEvO/EztPvwkvvipq2LhPntluYZN/X6Mrwa/F5vHepVSSk1bpY+SZ05fVT/oszmuobOdXlPV818a0/noPSXMTt9OW6dft2/6020o/tt57e5XbeXH+mm7bQ0tVRl5Urrqoebj3CeRGz4V7/6H9E9nPT/e/sm3x+6d1ukx2XPfeWF89PSvRfWJ+c4vPz1OOXJ+d+9Jxr0AoOHSi66Mffd+bixYMF2fH0bcccfKuPran8VhRx5Y7ltDZw297LTVrNEf39/10LruIQCAJ4YHH3go/u2H18XDD0/fPzO65ZZbxP4H7BVP3abzrYvW0P9bOH9tq5mjQ+nqh/v8nlEAAJgCT9tyxujvKS2/CUAppZRSSqnprK6RJ6V3P7LxT18BAMBU2nGLoc7H98ccc8zwp5d+uWcoverir3W3AABg/E444YT42e0PdPdGS6H0995y/GCh9Kqr0k+HAwDA+Jx22mmxyy67bLpQet5555X7y5Ytixe+sP038/c71ma8/afKRNbRa8ygc012PADAVHvkkUdi1apVMWvWrJgzZ075z4fWpd8zOjw8POr3jSbV7yBN4x999NGBQunomSehClPpdVDj7f941+tan0z3AACgzSZ5Utpsa+vTz6D9JxLexpq3OvdYaxjk3NU8TfV5m+drnre5DwCQy3Q+KR04lB533HHdlg3aQlVlPOEqVxCbTCBs6zue+XodS+1Ng64JAGBT2ixDaduT0mq7V5Cq2scKVfU5p0uvc/ZbS9t11lXXXI1vbvfTHJs09yejfv5NNedETfS6mvdwvHNMdjwAPNlMZygd1/eUNsNEtZ1em1Vv76easxkYplLzOurGWkv9mprb/bT1HXTspjAd5xjERN/naly6jupaxjPXZMcDAFNrQj/oVP9inrbrVdfc3xykNTUDWnOd6Xivtaf26lh9uym1t52n2dbvXI9H1T1pXlNb23RK97l57wGAyZk5c2b5BDW9TtbAoTQFil5f1Jtf8KcyfFThZpCqq9oGDSapX3Oeamyv16QaV29L+p27PqZ+vqZ0rF4TNdE56uPGOzZdW6/rH8RkxwMAm1YKounj/P333798nWwwHffH91UYGW8oaZPmqIJGeh1kziqcDFJ1bW1jaY6pr7eS9uvrrvo0r2WQeep69akqaZ5jUBOZo+o31tjqeNVnKtTXMl5p7GTGAwCdQJrqec97XmyxxRbxjne8Y9LBdOBQ2gwb9S/o9S/0T1Tp+nqFmKq93ie91u9Ltd1rfxATGTNV0vX1uh9Tqbr2iZ67vu7N4T4CwONNFUh322232HXXXeOII46IvfbaK84999xJBdMJfU9pUv+CPpGAksY3x6T9zTUotK21qa1P1da2Xe3Xpba2e1Pdl17jNhdpnVVtavV7AADkkULnW97ylnjta18br371q2O//fYrw+kBBxwQl19++UY/oT+ocX1PaT1sPBmDQf0eDFp1aX+q71uvcw9q0PGTOcdEVOeq7t94zz/d6wWAJ6p169bF0qVL4y/+4i/ida97XSxZsiQOOeSQWLx4cRx66KGxfv36bs/xGdfH9/XXuokEhF7hLLVvruEhra2txjpWV7+2tvtQtTXvQdUvtdfHNfv1UvWr5q7vD6J5/qRtbGqrqq4+LmnuD2qi4wZdPwDQXwqla9asKeuxxx4bea0qHZ+Icf/y/CR9Ua9/kW/bTpr7SVtbU69xEzWR8/XT7N9rbb3mrPq3Ha/mHu+akn7zDmKy4wGAJ5bp/OX5kULpnXc9MPzT/7q/tZYuXTr8zne+MyXWkSrCS9/t5mvz+CA1nr6TrfGea7LXVfUfa57xzKuUUkoptamrCJXDv/zlL4fvuOOO4dWrVw/fc889o+ree+8dea3XfffdN3z//fcPr1y5shyftOXMVCmHpjw64R90aioCVHer86Qt7defuDX3x1LNUZ83p2ot1Xr67TerfjxdV3UfqmtMqmN19eMAAE9kE/74fizNgNVPWyAbS68xg8y1qdcPAPBEtNn+2/d1KbT1qqnSK0wOEjKb2tZdFQAA0+tx96S06tt8rQwy11h9BpkDAOCJLj3pvPHGG+O2226L1atXd1s36PWkdPvtt49nPvOZ5RPSQZ+UTvqn79uMN9RNJAT2GpPam5r92vo0jXc9AABPNCmUfvOb3yz/ffsdd9yx2xplEE3S8fRrSYeH15dt1a+Luvfe++LWW38RBx988NSH0rFs6lA61jnT+OY8veYd63z9xtX1mwMA4PEuhc7PfvazccIJJ5T7neC5PtanELp+OB588FdlEF1XJNN1a9fFw488HPff/0Bsv9228b3vL4vXvPo1U/s9pSmMjVVNKdD1qkGO1+ft9TqV2tZRtQEAPJGlMJoq/WtNZRXBtPNU9LEidK4pg2eqhx9+ZOTYeA38pPS4447rtozfWKExhbtBgmW9X9t2c55e86b2sbSNq6vmGKsfAMDjVfWk9M1vfvPIU9IUOFMwTdv33ndfrH1sbaxdm6rz0X0Kp9ttt01c+cMfTM2T0hS+qgBWbbftt9Wm0CtgJqm9Oj5o4ByrAACYPuP+ntK20JdCXK/2sdTD5KBhsF/fXvOl/YnqNc+g6wUAeDzaLJ+U1qUwVlVdr/ZNIYXBqtr2x1JfW7MGOV6ptw16bgAA+ptQKB0rEKb2ZphrU++XXnvNl9TDYLVd7deltrHO3+88AABMv032pLQKg1NprLA5GWnuZtW1tQEAPJnMnDmz/OdGn/KUObHFFk+JbbfZJrbbbtvYYYftY8cdd4inPnXrbs/xm1AoTeohrXqtgukgwbGt3yDBtn68bY6qbax5mtKYZtVV+2neau5mHwCAJ7L0b98vOerI+NN3vzs+fMaH4txzzo5PfuLc+PrX/jl+cv01RVDdottz/AYOpfUwll7rwa0e2NJ21a+Xql+bfuPTsep4vzn6qcb1Okc/1fmrAgB4stl1113jkEMOiQMOPHCkdtt991i4887dHhMzcCitQlivQFYPiem1V+gbJEyONT5p61OfeyLHAQDoLf3U/dkfPyd+91WvKrLUi2Lx4v1jn332i2c96zmx007zy5/Wn6gJ/TOjdVWwq8JeXf1Yv369DDI+tVfH2+Ye5PhY2sYBADzRNX8l1IwZM+PIIw6P5z73uUUI3anbK2LBggXx9Kc/PXbdbc+4/fbl0/croepSYKtCWzPg1Y/161cZdHxS9a0fr9TnaTteVz/eq+p6rb1urD79jk92/kHGAwBMVPaP75OpDjwpAE7mHGlsNb7XPFWfevVrn2rTdR4AgMnarD6+TyGqeno4SKBqPmlM6nM09TtWV/VrrmGQsUmv84x1/vr56udvW0vSnKs5/1j7TW3H285b6TcXAEA/j5uP71PgqVevtn5SoKpXr7a61NZ2vvFI/Ztz1+ftp36+ev9e7WNpu8akV3ulOl6dt37u+j4AwKayZMmSOPbYY+Oo4rWqxc9/fjzjt36r22NiNtkPOrWph6K2ful4au8XntqO9xrTb6628w+qmrPfeftpG19tj/Va12wbpA8AwEQ1n5QW0bFsHx5eH+vXD8dDDz086t/Cf/DBB2P16rsn9KR00qG0btBAVPUbK2S1zZfakrbztPXflKpzV9K5eq2xeaxtbNIc3zZf0hyfVOcYS9t8AABjaYbSFDzrIfTe++6LtY+tjbVrU62LNWvWlCF0SkPpcccd120ZHagG0QxF/YLXWAGqOudExyeDrLvXmpvnqO+3zdu2nrHG1I01fizj6QsAULdZhtK2H3SaqCqIpXnGCmVJdb7q3IOMqWuud6xr6He8fqy+jnr/QccnY+039Tpeb6+2x5oLAKCfx1UoTfu99ApPSfNY27y99pvHKr3am1K/sTTnaRvTXE+/Pknb+upt9fHNfknb+Lrq+Fj9AAAGMZ2hdNK/PD9JAahZTSkoTSYsTXRcL/W1NqtN/Vi1na6nrq1Ppepb3Yfm2LRfH9t2vHqtV9WW1M8HAPB4sklCaTMoVSGprhnS6lL/6Q5UzfXWayKa45v71fVV96F+valP8/rTfjU2qY5XY6uq2up9AQAeb6btSWk/qX89wLWFtE2puc76fr19LKlftdbm2OZ+Ut+uG7S9rV/zvjW3q/1Kr/ZB5R4PAOSRPr5PlT66T1X+Wqh1ne1OrYv1qa2oiZhwKK2HinrQqGq8UuBKlcb2CmmTVa2rvr7qnG36XUe/Y2NJYzfF+FTVfasqqb9W2wAAE1V9P2n63tH0PaWd7y1N+491al3n+0rTsdR3IiYUSqswVKnCT70mopo3veZUnb/XWurrbOvTdv2pT1XpeFufftrGN+eojiXpNe039Ro7qNzjAYDptcMOO8S9994bQ0NFcJwxI2bOnBGzZs2M2bNnxVZbbRlbb711bLvtNkW/7eLXnrZjzJu7U/kDT9tvt313hsFskp++b9tvtieDHKu09anU5xlLNUd9vn5zJ/36Vvtt7b30mivpN67Sb3yl17F+YwAA+kk/fX/dddfFbbfdFqvvXt1tHVsKpHPnzo0999xz6n4lVFOvoDVoeEr7yXgCVb/5B1Wdt5fJzj9d+t2/ZFPcKwDgySmF0lWrVsWsWbNizpw55ZPSuqGhofLj+vRal/ZTpfHTFkoBAHhims5Qukl++h4AACZDKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBABjYzJkzY86cOWXNnj175LWqdHwihFIAAAaWQudBBx0UixYtKmufffaJJUuWxIknnhjnnXdezJgxsXgplAIAMLB169bFFVdcUQbSAw88MF75ylfGO9/5zjj++OPL1/Xr13d7jo9QCgDAwFIoTbV06dKYO3duGU6f85znxOLFi8tAmo5NhFAKAEBfQ0NDoyqFz1Qf/OAHy4/zn/e8500qkCZCKQAAfaXg2RZMh4eH4yUveUn5mvabfcZDKAUAoK8UStMPMDVDZwqia9eunXQgTYRSAAD6qgJpU9VWD6Nt/QYhlAIA0FfbU9JBajyEUgAA+uoVSpPqdbKEUgAA+nrooYcmVOMxdMwxxwx/eumX4+5HhrtNo1118dfi8MMP7+4BAMD47LLLLvGz2x/o7o224xZD8XtvOX7sUPrcnbfpbgEAwMRMOpQCAMBUqUKp7ykFACA7oRQAgOyEUgAAshNKAQDITigFACC7kZ++BwCAHEZ+JVR3HwAAMoj4//wiXY9Cle3CAAAAAElFTkSuQmCC" alt="" />