一:导入R包及需要画热图的数据
library(pheatmap)
data<- read.table("F:/R练习/R测试数据/heatmapdata.txt",head = T,row.names=1,sep="\t")
二:画图
1)pheatmap(data)#默认参数
2)pheatmap(data,clustering_distance_rows = "correlation")#聚类线长度优化
3)pheatmap(data,scale="column")#按列均一化,"row","column" or "none"默认是"none"
4)pheatmap(data,scale="row")#按行均一化,"row","column" or "none"默认是"none"
5)pheatmap(data,display_numbers=T,number_format="%.2f",number_color="red",fontsize_number=8)#是否在每一格上显示数据,及其数据格式,大小及其颜色
6)pheatmap(data,cellwidth = 50,cellheight= 14)#格子大小
7) pheatmap(data,main="sbheatmap")#标题
8)pheatmap(data,color = colorRampPalette(c("MediumBlue","white","red"))(256))#颜色
9)pheatmap(data,clustering_distance_rows = "correlation",scale="column",display_numbers=T,number_format="%.1f",number_color="black",
fontsize_number=8,cellwidth = 14,cellheight= 14,color = colorRampPalette(c("MediumBlue","white","red"))(256))
原因是当每行只有两个数值的时候,任何两个不同的数值标准正态均一化后,都会变成-1和1。所以,会产生上述的图形(只有两种颜色)。面对这种类型的数据,建议直接计算每行两个数值的倍数的log2值,然后使用OS-tools画单列的热图。
当然, 单列热图也可以使用R语言的pheatmap包绘制,并通过一个函数控制0点的位置,在另一个R语言绘图的主题帖中也有介绍。
(3)聚类的原理
如同上图的聚类效果,简单说来,在基因完成归一化处理后,如果我们对行聚类(在上图中也就是对基因聚类),那么基因的顺序就会被重排。表达规律比较相似的基因将会被排在一起。表达模式差异越大的基因,则会远离。类似的,如果对列聚类(在上图中也就是对样本聚类),那么样本的顺序将会被重排,表达模式比较相似的样本自动会被归为一类。
例如,在以下的热图中,选择了对行(基因)聚类,不对列(样本)聚类。那是因为作者希望通过聚类,将表达模式相似基因归为一类在图中展示,所以基因聚类选择yes。而样本(列)是作者提前排好序的,是小鼠三个组织在6个发育阶段的样本。因为样本是提前排好序的,当然作者不希望这个顺序被打乱,所以列选择不聚类。
还有两个方向都不聚类的例子。例如在下图中,X轴是1个实验处理后0h、5h、10h的样本,是作者提前排好序的。本意是想呈现相关基因在梯度时间水平的变化规律。当然,作者不想这个顺序被重新排布了,所以列方向的聚类选择:no。在y轴方向,这些基因也是作者提前按照其所属的基因家族排过序的,当然也不想其顺序被打乱,所以行聚类也是选择no。