扩展库https://blog.csdn.net/Taily_Duan/article/details/52130135

opencv3.3+扩展库

基本例程(4-1)手势识别C++ 和简单形状匹配-LMLPHP

基本例程(4-1)手势识别C++ 和简单形状匹配-LMLPHP

/************************************************************************/
/*
Description: 手势检测
先滤波去噪
-->转换到HSV空间
-->根据皮肤在HSV空间的分布做出阈值判断,这里用到了inRange函数,
然后进行一下形态学的操作,去除噪声干扰,是手的边界更加清晰平滑
-->得到的2值图像后用findContours找出手的轮廓,去除伪轮廓后,再用convexHull函数得到凸包络
Author: Yang Xian
History:
*/
/************************************************************************/
#include <iostream> // for standard I/O
#include <string> // for strings
#include <iomanip> // for controlling float print precision
#include <sstream> // string to number conversion #include <opencv2/imgproc/imgproc.hpp> // Gaussian Blur
#include <opencv2/core/core.hpp> // Basic OpenCV structures (cv::Mat, Scalar)
#include <opencv2/highgui/highgui.hpp> // OpenCV window I/O using namespace cv;
using namespace std; int main(int argc, char *argv[])
{
const std::string sourceReference = "test3.avi";
int delay = 1; char c;
int frameNum = -1; // Frame counter //VideoCapture captRefrnc(sourceReference);
VideoCapture captRefrnc(0); if (!captRefrnc.isOpened())
{
// cout << "Could not open reference " << sourceReference << endl;
return -1;
} Size refS = Size((int)captRefrnc.get(CV_CAP_PROP_FRAME_WIDTH),
(int)captRefrnc.get(CV_CAP_PROP_FRAME_HEIGHT)); bool bHandFlag = false; const char* WIN_SRC = "Source";
const char* WIN_RESULT = "Result"; // Windows
namedWindow(WIN_SRC, CV_WINDOW_AUTOSIZE);
namedWindow(WIN_RESULT, CV_WINDOW_AUTOSIZE); Mat frame; // 输入视频帧序列
Mat frameHSV; // hsv空间
Mat mask(frame.rows, frame.cols, CV_8UC1); // 2值掩膜
Mat dst(frame); // 输出图像 // Mat frameSplit[4]; vector< vector<Point> > contours; // 轮廓
vector< vector<Point> > filterContours; // 筛选后的轮廓
vector< Vec4i > hierarchy; // 轮廓的结构信息
vector< Point > hull; // 凸包络的点集 while (true) //Show the image captured in the window and repeat
{
captRefrnc >> frame; if (frame.empty())
{
cout << " < < < Game over! > > > ";
break;
}
imshow(WIN_SRC, frame); // Begin // 中值滤波,去除椒盐噪声
medianBlur(frame, frame, 5);
// GaussianBlur( frame, frameHSV, Size(9, 9), 2, 2 );
// imshow("blur2", frameHSV);
// pyrMeanShiftFiltering(frame, frameHSV, 10, 10);
// imshow(WIN_BLUR, frameHSV);
// 转换到HSV颜色空间,更容易处理
cvtColor(frame, frameHSV, CV_BGR2HSV); // split(frameHSV, frameSplit);
// imshow(WIN_H, frameSplit[0]);
// imshow(WIN_S, frameSplit[1]);
// imshow(WIN_V, frameSplit[2]); Mat dstTemp1(frame.rows, frame.cols, CV_8UC1);
Mat dstTemp2(frame.rows, frame.cols, CV_8UC1);
// 对HSV空间进行量化,得到2值图像,亮的部分为手的形状
inRange(frameHSV, Scalar(0, 30, 30), Scalar(40, 170, 256), dstTemp1);
inRange(frameHSV, Scalar(156, 30, 30), Scalar(180, 170, 256), dstTemp2);
bitwise_or(dstTemp1, dstTemp2, mask);
// inRange(frameHSV, Scalar(0,30,30), Scalar(180,170,256), dst); // 形态学操作,去除噪声,并使手的边界更加清晰
Mat element = getStructuringElement(MORPH_RECT, Size(3, 3));
erode(mask, mask, element);
morphologyEx(mask, mask, MORPH_OPEN, element);
dilate(mask, mask, element);
morphologyEx(mask, mask, MORPH_CLOSE, element); frame.copyTo(dst, mask); contours.clear();
hierarchy.clear();
filterContours.clear();
// 得到手的轮廓
findContours(mask, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// 去除伪轮廓
for (size_t i = 0; i < contours.size(); i++)
{
// approxPolyDP(Mat(contours[i]), Mat(approxContours[i]), arcLength(Mat(contours[i]), true)*0.02, true);
if (fabs(contourArea(Mat(contours[i]))) > 30000) //判断手进入区域的阈值
{
filterContours.push_back(contours[i]);
}
}
// 画轮廓
drawContours(dst, filterContours, -1, Scalar(0, 0, 255), 3/*, 8, hierarchy*/);
// 得到轮廓的凸包络
for (size_t j = 0; j<filterContours.size(); j++)
{
convexHull(Mat(filterContours[j]), hull, true);
int hullcount = (int)hull.size(); for (int i = 0; i<hullcount - 1; i++)
{
line(dst, hull[i + 1], hull[i], Scalar(255, 0, 0), 2, CV_AA);
}
line(dst, hull[hullcount - 1], hull[0], Scalar(255, 0, 0), 2, CV_AA);
} imshow(WIN_RESULT, dst);
dst.release();
// End c = cvWaitKey(delay);
if (c == 27) break;
}
}

  

05-26 22:25