题目背景

原 维护队列 参见P1903

题目描述

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有 nnn 次点击要做,成功了就是o,失败了就是x,分数是按combo计算的,连续 aaa 个combo就有 a×aa\times aa×a 分,combo就是极大的连续o

比如ooxxxxooooxxx,分数就是 2×2+4×4=4+16=202 \times 2 + 4 \times 4 = 4 +16=202×2+4×4=4+16=20 。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。 那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是 (4+9)/2=6.5(4+9)/2 =6.5(4+9)/2=6.5 了

输入输出格式

输入格式:

第一行一个整数 nnn ,表示点击的个数

接下来一个字符串,每个字符都是o,x,?中的一个

输出格式:

一行一个浮点数表示答案

四舍五入到小数点后 444 位

如果害怕精度跪建议用long double或者extended

输入输出样例

输入样例#1:

4
????
输出样例#1:

4.1250

说明

osu很好玩的哦

WJMZBMR技术还行(雾),x基本上很少呢

Solution:

  期望题总是贼有意思。

  本题期望combo为$o$的期望连续长度的平方,所以我们设$f[i]$表示到了第$i$位的总期望combo,$g[i]$表示到了第$i$位结尾的连续$o$的期望长度,那么分情况讨论:

  1、当$s[i]==x$,则$f[i]=f[i-1],g[i]=0$;

  2、当$s[i]==o$,则$f[i]=f[i-1]+2*g[i-1]+1,g[i]=g[i-1]+1$($f[i]=f[i-1]+2*g[i-1]+1$是因为$f[i]=(g[i-1]+1)^2=g[i-1]^2+2*g[i-1]+1\;,\;g[i-1]^2=f[i-1]$);

  3、当$s[i]==?$,则$f[i]=f[i-1]+g[i-1]+0.5,g[i]=\frac{g[i-1]+1}{2}$;

  由于不知道$n$的范围,不好开数组,但是我们发现转移时当前的状态只与上一次的状态有关,于是直接滚掉就好了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
int n,cnt;
char s;
double f[],g[]; int main(){
ios::sync_with_stdio();
cin>>n;
For(i,,n){
cin>>s;
if(s=='x') f[cnt^]=f[cnt],g[cnt^]=;
else if(s=='o') f[cnt^]=f[cnt]+*g[cnt]+,g[cnt^]=g[cnt]+;
else f[cnt^]=f[cnt]+g[cnt]+0.5,g[cnt^]=g[cnt]/+0.5;
cnt^=;
}
printf("%.4lf",f[cnt]);
return ;
}
05-11 11:26