不难想到考虑每个点的贡献,ans=n*sigema(1~n)i C(n-1,i)*(2^C(n-1,2))*i^k
直接套第二类斯特林拆柿子即可。提示:sigema(1~n)i C(n,i)*C(i,j) = C(n,j)*2^(n-j)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
const int _=1e2;
const int maxK=2e5+_;
const int fbiK=(<<)+_;
const int mod=;
inline int ad(int x,int y){return (x>=mod-y)?(x-mod+y):x+y;}
inline int re(int x,int y){return (x<y)?(x-y+mod):x-y;}
inline int mu(int x,int y){return (LL)x*y%mod;}
inline int qp(int x,int y){int r=;while(y>){if(y&)r=mu(r,x);x=mu(x,x);y/=;}return r;} int fac[maxK],fac_inv[maxK],inv[maxK];
void yu(int K)
{
fac[]=;for(int i=;i<=K;i++)fac[i]=mu(fac[i-],i);
fac_inv[K]=qp(fac[K],mod-);
for(int i=K-;i>=;i--)fac_inv[i]=mu(fac_inv[i+],i+); inv[]=;for(int i=;i<=K;i++)inv[i]=mu(inv[mod%i],mod-mod/i);
} namespace GETS2
{
int Re[*fbiK];
void NTT(int *a,int n,int op)
{
for(int i=;i<n;i++)
if(i<Re[i])swap(a[i],a[Re[i]]);
for(int i=;i<n;i<<=)
{
int gn=qp(,(mod-)/(i<<));
if(op==-)gn=qp(gn,mod-);
for(int j=;j<n;j+=(i<<))
{
int g=;
for(int k=;k<i;k++,g=mu(g,gn))
{
int k1=a[j+k],k2=mu(a[j+k+i],g);
a[j+k]=ad(k1,k2);
a[j+k+i]=re(k1,k2);
}
}
}
if(op==-)
{
int inv=qp(n,mod-);
for(int i=;i<n;i++)a[i]=mu(a[i],inv);
}
}
int n,m,L,A[*fbiK],B[*fbiK],S2K[*fbiK];
void main(int K)
{
m=*K-;for(n=;n<=m;n<<=)L++;
for(int i=;i<n;i++)Re[i]=(Re[i>>]>>)|((i&)<<(L-)); for(int i=;i<=K;i++)
{
A[i]=mu((i&)?mod-:,fac_inv[i]);
B[i]=mu(qp(i,K),fac_inv[i]);
} NTT(A,n,),NTT(B,n,);
for(int i=;i<n;i++)S2K[i]=mu(A[i],B[i]);
NTT(S2K,n,-);
}
}
int S2[][];
void QWQ()
{
S2[][]=;
for(int i=;i<=;i++)
for(int j=;j<=i;j++)
S2[i][j]=ad(S2[i-][j-],mu(S2[i-][j],j));
} int main()
{
int n,K;
scanf("%d%d",&n,&K);yu(K);
GETS2::main(K);//QWQ(); using namespace GETS2;
int ans=,C=;
for(int j=;j<=K;j++)
{
C=mu(mu(C,n-j),inv[j]);
ans=ad(ans, mu( mu(S2K[j],fac[j]) , mu(C,qp(,n--j)) ) );
}
printf("%d\n", mu( mu(ans,n) , qp(,(LL)(n-)*(n-)/%(mod-)) ) ); return ;
}