题目描述
欧几里德的两个后代Stan和Ollie正在玩一种数字游戏,这个游戏是他们的祖先欧几里德发明的。给定两个正整数M和N,从Stan开始,从其中较大的一个数,减去较小的数的正整数倍,当然,得到的数不能小于0。然后是Ollie,对刚才得到的数,和M,N中较小的那个数,再进行同样的操作……直到一个人得到了0,他就取得了胜利。下面是他们用(25,7)两个数游戏的过程:
Start:25 7
Stan:11 7
Ollie:4 7
Stan:4 3
Ollie:1 3
Stan:1 0
Stan赢得了游戏的胜利。
现在,假设他们完美地操作,谁会取得胜利呢?
输入输出格式
输入格式:
第一行为测试数据的组数C。下面有C行,每行为一组数据,包含两个正整数M, N。(M, N不超过长整型。)
输出格式:
对每组输入数据输出一行,如果Stan胜利,则输出“Stan wins”;否则输出“Ollie wins”
输入输出样例
输入样例#1:
2
25 7
24 15
输出样例#1:
Stan wins
Ollie wins
解题思路
自己瞎yy了一下,假如我这次取可以取很多次,那么我就可以选择顶到头或者让对方顶到头,所以这种情况一定是必胜的情况,也就是n>=2*m ,剩下情况没得选择就继续,时间复杂度log n
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long LL;
LL n,m;
int T,flag;
int main(){
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&n,&m);
flag=0;
while(n>0 && m>0){
flag^=1;
if(n<m) swap(n,m);
if(n>=2*m) break;
n-=m;
}
if(flag) cout<<"Stan wins"<<endl;
else cout<<"Ollie wins"<<endl;
}
return 0;
}