For n elements x1, x2, ..., xn with positive integer weights w1, w2, ..., wn. The weighted median is the element xk satisfying 
Weighted Median-LMLPHP and  Weighted Median-LMLPHP , S indicates  Weighted Median-LMLPHP

Can you compute the weighted median in O(n) worst-case?
 

Input

There are several test cases. For each case, the first line contains one integer n(1 ≤  n ≤ 10^7) — the number of elements in the sequence. The following line contains n integer numbers xi (0 ≤ xi ≤ 10^9). The last line contains n integer numbers wi (0 < wi < 10^9).
 

Output

One line for each case, print a single integer number— the weighted median of the sequence.
 

Sample Input

7
10 35 5 10 15 5 20
10 35 5 10 15 5 20

Sample Output

20

Hint

The S which indicates the sum of all weights may be exceed a 32-bit integer. If S is 5, Weighted Median-LMLPHP equals 2.5.
 
这是一道山东省省赛的题,英语不好的我看了以后一脸懵逼,最后花了好长时间才看懂,原来很是简单

题目意思:
给一些数x和它们对应的权值w,按照如图所示公式,s是所有权值w的总和。
求一个xk,使得满足前两个公式。

解题思路:
用结构体保存元素值和权值,先升序排列,累计xk之前的权值和,直到该权值大于s。

#include<stdio.h>
#include<algorithm>
using namespace std;
struct message{
int x;
int w;
}a[10000010];
int my_cmp(message a,message b)
{
if(a.x<b.x)
return 1;
else
return 0;
}
int main()
{
int n,i;
double s,y;
while(scanf("%d",&n)!=EOF)
{
s=0;
for(i=0;i<n;i++)
scanf("%d",&a[i].x);
for(i=0;i<n;i++)
{
scanf("%d",&a[i].w);
s=s+a[i].w;
}
s=s/2.0;
y=0;
sort(a,a+n,my_cmp);
for(i=0;i<n;i++)
{
y=y+a[i].w;
if(y>s)
{
printf("%d\n",a[i].x);
break;
}
}
}
return 0;
}

  

05-18 01:34