Transposed Convolution, 也叫Fractional Strided Convolution, 或者流行的(错误)称谓: 反卷积, Deconvolution. 定义请参考tutorial. 此处也是对tutorial中的theano实现做一个总结, 得到一段可用的Deconvolution代码.

反卷积(都这么叫了, 那我也不纠结这个了. )的实现方式之一是前向卷积操作的反向梯度传播过程, 所以在Theano中可使用theano.tensor.nnet.abstract_conv.conv2d_grad_wrt_inputs方法来实现反卷积, 方法名的大概意思是给定输出后, 它可以反向传播到输入的梯度大小, 即\(\frac {\partial a}{x}\), 其中\(a,x\)分别为输出和输入.

Deconvolution Using Theano-LMLPHP

封装成常见的class:

class DeconvolutionLayer(Layer):
def __init__(self, input, filter_shape, stride, padding = (0, 0), name = 'deconv' ):
Layer.__init__(self, input, name, activation = None)
W_value = util.rand.normal(filter_shape)
W_value = np.asarray(W_value, dtype = util.dtype.floatX)
self.W = theano.shared(value = W_value, borrow = True) s1, s2 = stride;
p1, p2 = padding;
k1, k2 = filter_shape[-2:]
o_prime1 = s1 * (self.input.shape[2] - 1) + k1 - 2 * p1
o_prime2 = s2 * (self.input.shape[3] - 1) + k2 - 2 * p2
output_shape=(None, None, o_prime1, o_prime2)
self.output_shape = output_shape
self.output = T.nnet.abstract_conv.conv2d_grad_wrt_inputs(output_grad = self.input, input_shape = output_shape, filters = self.W, filter_shape = filter_shape, border_mode= padding, subsample= stride)
self.params = [self.W]

不明白为什么conv2d_grad_wrt_inputs方法一定要提供input_shape参数. 文档是这么写的:

值得一提的是, padding一般取0.

在用FCN作语义分割的paper code(caffe 实现)中:

n.upscore = L.Deconvolution(n.score_fr,
convolution_param=dict(num_output=21, kernel_size=64, stride=32,
bias_term=False),
param=[dict(lr_mult=0)])
n.score = crop(n.upscore, n.data)

也就是说, 它是一次性将feature map放大32倍, 然后crop到与输入一样大小. 它为什么能这样做呢?

因为它的第一层conv pad = 100:

n.conv1_1, n.relu1_1 = conv_relu(n.data, 64, pad=100)

这样一来, crop掉的数据都是在padding 0上计算来的.


[full code](https://github.com/dengdan/pylib/blob/master/src/nnet/layer.py#L94)

04-28 14:51