UFLDL深度学习笔记 (五)自编码线性解码器
1. 基本问题
在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论“UFLDL 线性解码器”,区别在于输出层去掉了\(sigmoid\),将计算值\(z\)直接作为输出。线性输出的原因是为了避免对输入范围的缩放:
S 型激励函数输出范围是 [0,1],当$ f(z^{(3)}) $采用该激励函数时,就要对输入限制或缩放,使其位于 [0,1] 范围中。一些数据集,比如 MNIST,能方便将输出缩放到 [0,1] 中,但是很难满足对输入值的要求。比如, PCA 白化处理的输入并不满足 [0,1] 范围要求,也不清楚是否有最好的办法可以将数据缩放到特定范围中。
既然改变了输出层激活函数,可以想到需要对其残差、偏导公式关系重新推演。
2. 公式推导
线性输出的神经网络仍然是三层,\(n_l=3\),自编码线性输出\(a_i^{(n_l)}\),则\(f'(z_i^{(n_l)})=1\),计算输出层残差:
\]
使用反向传播计算另外两层残差:
\]
根据梯度与残差矩阵的关系可得:
\]
同理可求出:
\]
\]
这样就得到了线性解码器自编码网络代价函数对网络权值\(W^{(1)}, b^{(1)}; W^{(2)}, b^{(2)}\)的梯度。
3. 代码实现
根据前面的步骤描述,与稀疏自编码的区别仅仅是梯度公式形式的差异,基本流程以及惩罚项、稀疏性约束完全复用稀疏自编码的要求。需要增加的模块是代价函数与梯度计算模块sparseAutoencoderLinearCost.m
,详见https://github.com/codgeek/deeplearning
function [cost,grad] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
lambda, sparsityParam, beta, data)
% visibleSize: the number of input units (probably 64)
% hiddenSize: the number of hidden units (probably 25)
% lambda: weight decay parameter
% sparsityParam: The desired average activation for the hidden units (denoted in the lecture
% notes by the greek alphabet rho, which looks like a lower-case "p").
% beta: weight of sparsity penalty term
% data: Our 64x10000 matrix containing the training data. So, data(:,i) is the i-th training example.
% The input theta is a vector (because minFunc expects the parameters to be a vector).
% We first convert theta to the (W1, W2, b1, b2) matrix/vector format, so that this
% follows the notation convention of the lecture notes.
W1 = reshape(theta(1:hiddenSize*visibleSize), hiddenSize, visibleSize);
W2 = reshape(theta(hiddenSize*visibleSize+1:2*hiddenSize*visibleSize), visibleSize, hiddenSize);
b1 = theta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize);
b2 = theta(2*hiddenSize*visibleSize+hiddenSize+1:end);
%% ---------- YOUR CODE HERE --------------------------------------
% forward propagation
[~, m] = size(data); % visibleSize×N_samples, m=N_samples
a2 = sigmoid(W1*data + b1*ones(1,m));% active value of hiddenlayer: hiddenSize×N_samples
a3 = W2*a2 + b2*ones(1,m);% liner decoder would output Z. output result: visibleSize×N_samples
diff = a3 - data;
penalty = mean(a2, 2); % measure of hiddenlayer active: hiddenSize×1
residualPenalty = (-sparsityParam./penalty + (1 - sparsityParam)./(1 - penalty)).*beta; % penalty factor in residual error delta2
% size(residualPenalty)
cost = sum(sum((diff.*diff)))./(2*m) + ...
(sum(sum(W1.*W1)) + sum(sum(W2.*W2))).*lambda./2 + ...
beta.*sum(KLdivergence(sparsityParam, penalty));
% back propagation
delta3 = -(data-a3); % liner decoder: visibleSize×N_samples
delta2 = (W2'*delta3 + residualPenalty*ones(1, m)).*(a2.*(1-a2)); % hiddenSize×N_samples. !!! => W2'*delta3 not W1'*delta3
W2grad = (a2*(delta3'))'; % ▽J(L)=delta(L+1,i)*a(l,j). sum of grade value from N_samples is got by matrix product hiddenSize×N_samples * N_samples×visibleSize. so mean value is caculated by "/N_samples"
W1grad = (data*(delta2'))';% matrix product visibleSize×N_samples * N_samples×hiddenSize
b1grad = sum(delta2, 2);
b2grad = sum(delta3, 2);
% mean value across N_sample
W1grad=W1grad./m + lambda.*W1;
W2grad=W2grad./m + lambda.*W2;
b1grad=b1grad./m;
b2grad=b2grad./m;% mean value across N_sample: visibleSize ×1
grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)];
end
function sigm = sigmoid(x)
sigm = 1 ./ (1 + exp(-x));
end
function value = KLdivergence(pmean, p)
value = pmean.*log(pmean./p) + (1- pmean).*log((1 - pmean)./( 1 - p));
end
4.图示与结果
数据集来自STL-10 dataset. 需要注意的是我们使用的是下采样之后的图片,每张图片为8X8的彩色图片;另外也原始数据需要做ZCA白化处理,得益于matlab丰富的库函数,svd分解、白化等每个步骤只需要单行代码即可完成。
% Apply ZCA whitening
sigma = patches * patches' / numPatches;
[u, s, v] = svd(sigma);
ZCAWhite = u * diag(1 ./ sqrt(diag(s) + epsilon)) * u';
patches = ZCAWhite * patches;
STL-10 原始图片下采样到8X8像素图片
设定与练习说明相同的参数,STL10数据为8X8像素的彩色图片,所以输入层是192个单元,隐藏层设定400个节点,输出层同样是192个节点。运行代码主文件linearDecoderExercise.m 可以学习到彩色图片特征,如上图所示,本节只是将数据提取为特征,并不进行进一步分类,特征数据留给后续的卷积神经网络使用。