U66905 zz题

考虑一个点权值被计算了多少次。。。不知

所以对未来承诺,方便直接算上总数!

然后其实是给边定向,即先删除fa和son的哪一个

f[x][j],会计算j次

无法转移

f[x][j][k],其中会从子树计算k次。

当边从儿子指向父亲,枚举就是O(n^4)的了,还不能sz剪枝

转移是O(n^4)的

(其实这里记录一个前缀和之类的就行了)

可以用f[i][j],仅往i子树里选择j个最大值

g[i][j],往i子树外额外选择j个最大值

然后就可以转移了

注意:

权值有负数,而每个儿子强制必须选的,所以不能累计取max

// luogu-judger-enable-o2
#pragma GCC optimize("O3,Ofast,inline,unroll-all-loops,-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,popcnt")
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=;
const ll inf=0x3f3f3f3f3f3f3f3f;
int n;
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
ll d[N];
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
ll h[N][N][N];
ll f[N][N],g[N][N];
int sz[N];
void dfs(int x){
// cout<<" dfs "<<x<<endl;
sz[x]=;
for(reg j=;j<=n;++j){
h[x][j][]=d[x]*j;
}
// bool fl=false;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
dfs(y);
// fl=true;
for(reg j=;j<=n;++j){
for(reg k=min(j,sz[x]+sz[y]);k>=;--k){
ll old=h[x][j][k];
h[x][j][k]=-0x3f3f3f3f3f3f3f3f;
for(reg p=min(sz[x],k-);p>=;--p){
h[x][j][k]=max(h[x][j][k],h[x][j][p]+f[y][k-p]);
}
h[x][j][k]=max(h[x][j][k],old+g[y][j]);
}
}
sz[x]+=sz[y];
}
// cout<<" now "<<x<<endl;
// if(!fl){
// cout<<" leaf "<<endl;
// for(reg j=1;j<=n;++j){
// h[x][j][1]=d[x]*j;
// }
// }
for(reg j=;j<=n;++j){
// cout<<" jjj "<<j<<endl;
f[x][j]=h[x][j][j];
for(reg k=;k<=sz[x]&&k+j<=n;++k){
g[x][j]=max(g[x][j],h[x][j+k][k]);
}
// cout<<" f "<<f[x][j]<<" g "<<g[x][j]<<" "<<endl;
}
}
int main(){
rd(n);
for(reg i=;i<=n;++i) rd(d[i]);
int y=;
for(reg x=;x<=n;++x){
rd(y);add(y,x);
}
memset(h,0xcf,sizeof h);
memset(f,0xcf,sizeof f);
memset(g,0xcf,sizeof g);
dfs();
ll ans=-0x3f3f3f3f3f3f3f3f;
for(reg j=;j<=n;++j){
ans=max(ans,f[][j]);
}
printf("%lld",ans);
return ;
} }
signed main(){
// freopen("data.in","r",stdin);
// freopen("my.out","w",stdout);
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/29 20:22:41
*/
04-28 12:23