在对大批量数据进行图像处理的时候,比如说我提取SIFT特征,数据集为10W张图片,一个SIFT特征点是128维,一张图片提取出500个特征点,这样我们在处理的时候就是对5000万个128维的数据进行处理,这样处理所需要的耗时太长了,不符合实际生产的需要。我们需要用一种方法降低运算量,比如说降维。

  看了一些论文,提到的较多的方法是LSH(Locality Sensitive Hash),就是局部敏感哈希。我们利用LSH方法在5000万个特征点中筛选出极少量的我们需要的特征点,在对这些极少量的数据进行计算,就可以得到我们想要的结果啦。

 package com.demo.lsh;

 import com.demo.config.Constant;
import com.demo.dao.FeatureDao;
import com.demo.dao.FeatureTableDao;
import com.demo.dao.HashTableDao;
import com.demo.entity.HashTable;
import com.demo.utils.MD5Util;
import com.demo.utils.MathUtil;
import org.opencv.core.Mat;
import org.springframework.util.StringUtils; import java.io.*;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.*; public class LSH {
//维度大小,例如对于sift特征来说就是128
private int dimention = Constant.DIMENTION;
//所需向量中元素可能的上限,譬如对于RGB来说,就是255
private int max = Constant.MAX;
//哈希表的数量,用于更大程度地削减false positive
private int hashCount = Constant.HASHCOUNT;
//LSH随机选取的采样位数,该值越小,则近似查找能力越大,但相应的false positive也越大;若该值等于size,则为由近似查找退化为精确匹配
private int bitCount = Constant.BITCOUNT;
//转化为01字符串之后的位数,等于max乘以dimensions
private int size = dimention * max;
//LSH哈希族,保存了随机采样点的INDEX
private int[][] hashFamily;
private HashTableDao hashTableDao;
/**
* 构造函数
*/
public LSH(HashTableDao hashTableDao) {
this.hashTableDao = hashTableDao;
dimention = Constant.DIMENTION;
max = Constant.MAX;
hashCount = Constant.HASHCOUNT;
bitCount = Constant.BITCOUNT;
size = dimention * max;
hashFamily = new int[hashCount][bitCount];
generataHashFamily();
} /**
* 生成随机的投影点 ,在程序第一次执行时生成。投影点可以理解为后面去数组的索引值
*/
private void generataHashFamily() {
if (new File("/home/fanxuan/data/1.txt").exists()) {
try {
InputStream in = new FileInputStream("/home/fanxuan/data/1.txt");
ObjectInputStream oin = new ObjectInputStream(in);
hashFamily = (int[][]) (oin.readObject());
} catch (IOException e) {
e.printStackTrace();
} catch (ClassNotFoundException e) {
e.printStackTrace();
}
}else {
Random rd = new Random();
for (int i = 0; i < hashCount; i++) {
for (int j = 0; j < bitCount; j++) {
hashFamily[i][j] = rd.nextInt(size);
}
}
try {
OutputStream out = new FileOutputStream("/home/fanxuan/data/1.txt");
ObjectOutputStream oout = new ObjectOutputStream(out);
oout.writeObject(hashFamily);
} catch (FileNotFoundException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
} //将向量转化为二进制字符串,比如元素的最大范围255,则元素65就被转化为65个1以及190个0
private int[] unAray(int[] data) {
int unArayData[] = new int[size];
for (int i = 0; i < data.length; i++) {
for (int j = 0; j < data[i]; j++) {
unArayData[i * max + j] = 1;
}
}
return unArayData;
} /**
* 将向量映射为LSH中的key
*/
private String generateHashKey(int[] list, int hashNum) {
StringBuilder sb = new StringBuilder();
int[] tempData = unAray(list);
int[] hashedData = new int[bitCount];
//首先将向量转为二进制字符串
for (int i = 0; i < bitCount; i++) {
hashedData[i] = tempData[hashFamily[hashNum][i]];
sb.append(hashedData[i]);
}
//再用常规hash函数比如MD5对key进行压缩
MessageDigest messageDigest = null;
try{
messageDigest = MessageDigest.getInstance("MD5");
}catch (NoSuchAlgorithmException e) { }
byte[] binary = sb.toString().getBytes();
byte[] hash = messageDigest.digest(binary);
String hashV = MD5Util.bufferToHex(hash);
return hashV;
} /**
* 将Sift特征点转换为Hash存表
*/
public void generateHashMap(String id, int[] vercotr, int featureId) {
for (int j = 0; j < hashCount; j++) {
String key = generateHashKey(vercotr, j);
HashTable hashTableUpdateOrAdd = new HashTable();
HashTable hashTable = hashTableDao.findHashTableByBucketId(key);
if (hashTable != null) {
String featureIdValue = hashTable.getFeatureId() + "," + featureId;
hashTableUpdateOrAdd.setFeatureId(featureIdValue);
hashTableUpdateOrAdd.setBucketId(key);
hashTableDao.updateHashTableFeatureId(hashTableUpdateOrAdd);
} else {
hashTableUpdateOrAdd.setBucketId(key);
hashTableUpdateOrAdd.setFeatureId(String.valueOf(featureId));
hashTableDao.insertHashTable(hashTableUpdateOrAdd);
}
}
} // 查询与输入向量最接近(海明空间)的向量
public List<String> queryList(int[] data) {
List<String> result = new ArrayList<>();
for (int j = 0; j < hashCount; j++) {
String key = generateHashKey(data, j);
result.add(key);
HashTable hashTable = hashTableDao.findHashTableByBucketId(key);
if (!StringUtils.isEmpty(hashTable.getFeatureId())) {
String[] str = hashTable.getFeatureId().split(",");
for (String string : str) {
result.add(string);
}
}
}
return result;
} }

  

 package com.demo.config;

 public class Constant {
//维度大小,例如对于sift特征来说就是128
public static final int DIMENTION = 128;
//所需向量中元素可能的上限,譬如对于RGB来说,就是255
public static final int MAX = 255;
//哈希表的数量,用于更大程度地削减false positive
public static final int HASHCOUNT = 12;
//LSH随机选取的采样位数,该值越小,则近似查找能力越大,但相应的false positive也越大;若该值等于size,则为由近似查找退化为精确匹配
public static final int BITCOUNT = 32;
}

  简单的介绍下代码,构造函数LSH()用来建立LSH对象,hashTableDao为数据表操作对象,不多说;因为局部敏感哈希依赖与一套随机数,每次产生的结果都不一致,所以我们需要在程序第一次运行的时候将随机数生成并固定下来,我采用的方法是存放在本地磁盘中,也可以存放在数据库中。generateHashMap()方法为数据训练函数,int[] vercotr为特征向量,其他两个参数为我需要的标志位。queryList()方法是筛选方法。

  感谢http://grunt1223.iteye.com/blog/944894的文章。

05-11 20:46