阶梯博弈:
先借用别人的一幅图片。(1阶梯之前还有一个0阶梯未画出)
阶梯博弈的最初定义是这样的:每一个阶梯只能向它的前一个阶梯移动本阶梯的点,直至最后无法移动的为输。
那么,利用NIM,只计算奇数级的异或和,当为0时,先手必败。(至于为什么有这样的,我也能说明白,但下文要讨论的是怎么做)。
假设这样个NIM理解是对的。那么,要怎么移动呢?
首先(先手必胜情况下),先手必定移动奇数级的点到偶数级,使它的SG为0。对于后手,若他移动奇数级的点到偶数,则此时SG不为0,先手只需移动其他奇数级的点,即可使SG再为0。若后手移动偶数级的点到奇数,则先手只需把同等的点从该奇数级移走即可。
这个就是最基本的阶梯博弈。
POJ 1704
我们把每个CHESS当前可以移动的步数设为阶梯上的点,于是,把阶梯级数编号。注意,这里是从右往左编号,每次奇数级向前移动K步,则相当于把相应的点数移动到其右边的偶数级上。对偶数级移动也相同。于是,就是普通阶梯博弈了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
using namespace std; int n;
int p[];
int stair[]; int main(){
int cas;
scanf("%d",&cas);
stair[]=;
while(cas--){
scanf("%d",&n);
p[]=;
for(int i=;i<=n;i++){
scanf("%d",&p[i]);
}
sort(p,p+n+);
for(int i=;i<=n;i++)
stair[i]=p[i]-p[i-]-;
int sum=; int cnt=;
for(int i=n;i>=;i--){
cnt++;
if(cnt&)
sum^=(stair[i]);
}
if(sum) printf("Georgia will win\n");
else printf("Bob will win\n");
}
return ;
}