对于每个节点v,记录anc[v][k],表示从它向上走2步后到达的节点(如果越过了根节点,那么anc[v][k]就是根节点)。
dfs函数对树进行的dfs,先求出anc[v][0],再利用anc[v][k] = anc[anc[v][k - 1]][k - 1] (从v向上2步即为从v向上2步再向上2步)
求出其他anc[v][k]的值
lca(u, v)函数寻找u和v的lca, 首先把u和v调整到一个高度。如果此时u和v重合,那么这就是我们要找的lca,如果他们补充和,就不断的寻找一个最小的k,使得
anc[u][k] = anc[v][k]
int anc[maxn][], deep[maxn]; int dfs(int u, int fa)
{
for(int i = ; i < ; i++)
anc[u][i] = anc[anc[u][i - ]][i - ];
for(int i = head2[u]; i != -; i = Edge[i].next)
{
int v = Edge[i].v;
if(v == fa || deep[v]) continue;
anc[v][] = u;
deep[v] = deep[u] + ;
dfs(v, u);
}
} int lca(int u, int v)
{
if(deep[u] < deep[v]) swap(u, v);
for(int i = - ; i >= ; i--)
if(deep[anc[u][i]] >= deep[v])
u = anc[u][i]; for(int i = - ; i >= ; i--)
{
if(anc[u][i] != anc[v][i])
{
u = anc[u][i];
v = anc[v][i];
}
}
if(u == v) return u;
return anc[u][];
}
tarjan求lca
1.任选一个点为根节点,从根节点开始。
2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。
3.若是v还有子节点,返回2,否则下一步。
4.合并v到u上。
5.寻找与当前点u有询问关系的点v。
合并就用并查集就好了
板子先欠着
6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。