Sequence I
Problem Description
Mr. Frog has two sequences a1,a2,⋯,an and b1,b2,⋯,bm and a number p. He wants to know the number of positions q such that sequence b1,b2,⋯,bmis exactly the sequence aq,aq+p,aq+2p,⋯,aq+(m−1)p where q+(m−1)p≤n and q≥1.
Input
The first line contains only one integer T≤100, which indicates the number of test cases.
Each test case contains three lines.
The first line contains three space-separated integers 1≤n≤106,1≤m≤106 and 1≤p≤106.
The second line contains n integers a1,a2,⋯,an(1≤ai≤109).
the third line contains m integers b1,b2,⋯,bm(1≤bi≤109).
Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1) and y is the number of valid q’s.
Sample Input
2
6 3 1
1 2 3 1 2 3
1 2 3
6 3 2
1 3 2 2 3 1
1 2 3
6 3 1
1 2 3 1 2 3
1 2 3
6 3 2
1 3 2 2 3 1
1 2 3
Sample Output
Case #1: 2
Case #2: 1
Case #2: 1
题意:
给你a,b两个序列
和一个p ,求有多少个 q恰好满足 b1,b2,b3....bm 就是 a[q],a[q+p],a[q+2p]......a[q+(m-1)p];
题解:
将a序列,每隔p位置分成一组,这样最多有p组,个数和是n
将每组和b序列跑KMP计算答案
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 1e6+, M = 1e6, mod = 1e9+, inf = 2e9; int T,n,m,p,s[N],t[N],ans = ;
vector<int > P[N];
int nex[N];
int main()
{
int cas = ;
scanf("%d",&T);
while(T--)
{
scanf("%d%d%d",&n,&m,&p);
for(int i = ; i <= n; ++i) scanf("%d",&t[i]);
for(int i = ; i <= m; ++i) scanf("%d",&s[i]);
for(int i = ; i < p; ++i) P[i].clear();
memset(nex,,sizeof(nex));
ans = ;
int k = ;
for(int i=; i<=m; i++)
{
while(k>&&s[k+]!=s[i]) k = nex[k];
if(s[k+]==s[i])k++;
nex[i] = k;
}
if(p == )
{
k = ;
for(int i=; i<=n; i++)
{
while(k>&&s[k+]!=t[i]) k = nex[k];
if(s[k+]==t[i]) k++;
if(k==m) {
k = nex[k];
ans++;
}
}
printf("Case #%d: ",cas++);
printf("%d\n",ans);
}
else {
for(int i = ; i <= n; ++i)
P[i % p].push_back(t[i]);
for(int i = ; i < p; ++i) {
k = ;
for(int j = ; j < P[i].size(); ++j) {
while(k>&&s[k+]!=P[i][j]) k = nex[k];
if(s[k+]==P[i][j]) k++;
if(k==m) {
k = nex[k];
ans++;
}
}
}
printf("Case #%d: ",cas++);
printf("%d\n",ans); }
}
}