Kolakoski序列:我们知道的还是太少
上帝创造了整数,其余的则是我们人类的事了。正因为如此,质数、完全数、Fibonacci 数之类的数列才会让数学家们如痴如醉,因为它们的存在是如此自然,没有任何人造的因素。事实上,数学家们对这些数的认识也越来越丰富,挖掘出了这些数列中越来越深刻的性质。
不过,人类确实太渺小了。还有好多构造异常简单的“纯天然数列”,我们了解得实在太少。Kolakoski 数列就是最好的例子之一。
Kolakoski 数列仅由 1 和 2 构成,其中头 100 个数是
如果我们把连续的相同数看作一组的话,整个数列的定义就只有两句话: a(1) = 1 , a(n) 表示第 n 组数的长度。例如,a(6) = 2,就表明第 6 组数(从第 8 个数算起)的长度就是 2。注意,有了这几个条件,整个序列就已经唯一地确定了!a(1) = 1 就表明第一组数只有一个数,因此下一个数必须要换成 2 ,因此 a(2) = 2 ;而 a(2) = 2 又说明这个 2 必须要连着出现两个,因此 a(3) = 2;而 a(3) = 2 就表明数列接下来要有两个 1 ,等等。也就是说,生成这个数列的“参数”就是这个数列本身。更酷的说法则是,这个数列是分形的:如果把每一组数用它的长度来替换,就会得到这个数列本身。另外一个可能有些出人意料的事实是:Kolakoski 数列在 OEIS 中的序号非常靠前—— A000002。
关于 Kolakoski 数列,我们知道些什么?很少。我们知道,这个数列可以用递归式 a(a(1) + a(2) + … + a(k)) = (3 + (-1)k)/2 来表达。我们目前已经知道,去掉数列最前面的 1,剩下的部分可以从 22 开始,由替换规则 22→2211,21→221,12→211,11→21 迭代产生。
Kolakoski 数列的第 n 项有非递归的公式吗?目前我们还不知道。已经出现过的数字串今后都还会再次出现吗?目前我们也不知道。还有,我们有理由猜想,数列中 1 和 2 的个数各占一半。下图显示的就是数列前 n 项中数字 1 所占的比例,可见我们的猜想很可能是对的。
不过,目前还没有人能够证明这一点。而最近的一些研究则表明,数字 1 的比例很可能不是 1/2 。当然,还有第三种可能——这个极限可能根本不存在。这无疑又是一个最折磨人的数学未解之谜。